PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1302–m1303.
Published online 2009 October 3. doi:  10.1107/S1600536809039786
PMCID: PMC2971117

Poly[bis­(μ2-4,4′-bipyridine)bis­(3-nitro­benzoato)cobalt(II)]

Abstract

The hydro­thermal reaction of cobalt nitrate with 4,4′-bipyridine and 3-nitro­benzoic acid lead to the formation of the title complex, [Co(C7H4NO4)2(C10H8N2)2]n. In the crystal structure, the CoII atoms are coordinated by two terminal carboxyl­ate anions and four 4,4′-bipyridine ligands within slightly distorted octa­hedra. The CoII atom and one of the two independent 4,4′-bipyridine ligands are located on a twofold rotation axis, while the second independent 4,4′-bipyridine mol­ecule is located on a centre of inversion. One of the two rings of one 4,4′-bipyridine ligand is disordered over two orientations and was refined using a split model [occupancy ratio 0.68 (2):0.32 (2)]. The CoII atoms are connected by the 4,4′-bipyridine ligands into layers, which are located parallel to the ab plane.

Related literature

For background information on the solvothermal synthesis of coordination polymers with organic ligands, see: Kitagawa et al. (2004 [triangle]). For related structures, see: Biradha et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1302-scheme1.jpg

Experimental

Crystal data

  • [Co(C7H4NO4)2(C10H8N2)2]
  • M r = 703.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1302-efi5.jpg
  • a = 18.2074 (15) Å
  • b = 11.4717 (8) Å
  • c = 15.0543 (12) Å
  • β = 94.661 (2)°
  • V = 3134.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 295 K
  • 0.40 × 0.25 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.792, T max = 0.914
  • 13056 measured reflections
  • 3861 independent reflections
  • 3389 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.085
  • S = 1.03
  • 3861 reflections
  • 243 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039786/nc2159sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039786/nc2159Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research project was supported by the National Science Council of Taiwan (NSC97–2113-M-033–003-MY2) and by the project of the specific research fields of Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR—CH.

supplementary crystallographic information

Comment

The synthesis of coordination polymers has been a subject of intense research owing to their interesting structural chemistry and potential applications. A large number of these compounds have been synthesized by the reactions of metal salts and organic dicarboxyl acids or bipyridines (Kitagawa et al. 2004). As a further study in this field, the structure of the title compound is reported.

The asymmetric unit of the title compound consists of one CoII atom, one 3-nitrobenzoate anion and two half 4,4'-bipyridine ligands (Figure 1). The octahedral metal ions are coordinated by four nitrogen atoms of two pairs of crystallographically independent 4,4'-bipyridine ligands and two oxygen atoms of two symmetry related 3-nitro benzoate anions. The Co—O bond length is 2.0557 (13) Å and the average Co—N distance amount to 2.1836 (19) Å. The metal centers are linked via the 4,4'-bipyridine ligands into layers and the anions are only terminal bonded to the CoII atoms (Figure 2). Thus, this structure is different from the analogous nickel compound with the same ligands (Biradha et al. 1999).

Experimental

The title compound was prepared by the reaction of 4,4'-bipyridine (0.0781 g, 0.5 mmol), 3-nitrobenzoic acid (0.0836 g, 0.5 mmol), Co(NO3)2.6H2O (0.1454 g, 0.5 mmol), H2O (12.0 ml) and NH4OH (0.1 ml) at a pH value of 9.28. The mixture was heated to 423 K for 2 days in a Teflon-lined autoclave with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. The title compound was obtained as orange crystals with a yield of 0.0284 g (7.7%, based on cobalt). Anal. found/calcd.: C, 58.11/58.06; N, 12.14/11.95; H, 3.46/3.44%.

Refinement

The hydrogen atoms of benzene rings are placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The C12 and C13 atoms are disordered and were refined using a split model with occupancies of 0.68 (2) and 0.32 (2).

Figures

Fig. 1.
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [symmetry codes: (i) -x + 1,y,-z + 5/2; (ii) x,y - 1,z; (iii) -x + 1,y + 1,-z + 5/2; (iv) -x + 1/2,-y + 5/2,-z + 2.]. The H atoms are ...
Fig. 2.
Crystal structure of the title compound in c-direction showing the layers. The H atoms and the disordered C atoms are not shown for clarity.

Crystal data

[Co(C7H4NO4)2(C10H8N2)2]F(000) = 1444
Mr = 703.52Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6091 reflections
a = 18.2074 (15) Åθ = 2.3–28.1°
b = 11.4717 (8) ŵ = 0.61 mm1
c = 15.0543 (12) ÅT = 295 K
β = 94.661 (2)°Columnar, pink
V = 3134.0 (4) Å30.40 × 0.25 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3861 independent reflections
Radiation source: fine-focus sealed tube3389 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.1°
[var phi] and ω scansh = −24→23
Absorption correction: multi-scan (SADABS; Bruker, 2008)k = −8→15
Tmin = 0.792, Tmax = 0.914l = −19→20
13056 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0451P)2 + 1.8393P] where P = (Fo2 + 2Fc2)/3
3861 reflections(Δ/σ)max = 0.002
243 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.50001.191582 (19)1.25000.02382 (8)
O10.57262 (6)1.18588 (9)1.15246 (7)0.0354 (2)
O20.55038 (8)1.25715 (13)1.01478 (8)0.0558 (3)
O30.81068 (14)1.0206 (2)0.83179 (16)0.1227 (9)
O40.70904 (15)1.1028 (2)0.79153 (13)0.1102 (8)
N10.50001.38167 (14)1.25000.0311 (3)
N20.50000.99916 (13)1.25000.0300 (3)
N30.40427 (7)1.19830 (9)1.15518 (8)0.0298 (2)
N40.75458 (14)1.06877 (18)0.84869 (16)0.0765 (6)
C10.58770 (8)1.20319 (12)1.07270 (10)0.0330 (3)
C20.66071 (9)1.15062 (13)1.05012 (10)0.0347 (3)
C30.67493 (10)1.13700 (14)0.96153 (11)0.0427 (4)
H3A0.64061.16010.91580.051*
C40.74128 (12)1.08841 (15)0.94287 (13)0.0517 (5)
C50.79520 (11)1.05707 (17)1.00796 (16)0.0590 (5)
H5A0.83991.02670.99300.071*
C60.78115 (11)1.07189 (17)1.09553 (15)0.0548 (5)
H6A0.81691.05221.14070.066*
C70.71369 (9)1.11618 (14)1.11679 (12)0.0435 (4)
H7A0.70391.12291.17620.052*
C80.49826 (9)1.44210 (12)1.17370 (10)0.0359 (3)
H8A0.49751.40111.12030.043*
C90.49748 (9)1.56253 (12)1.17056 (10)0.0370 (3)
H9A0.49531.60121.11610.044*
C100.50001.62512 (16)1.25000.0317 (4)
C110.50001.75431 (16)1.25000.0314 (4)
C120.5282 (4)0.9374 (4)1.1858 (3)0.0383 (11)0.68 (2)
H120.54900.97791.14060.046*0.68 (2)
C130.5285 (4)0.8176 (4)1.1825 (3)0.0402 (11)0.68 (2)
H130.54770.77931.13510.048*0.68 (2)
C12'0.5517 (9)0.9382 (10)1.2151 (18)0.060 (4)0.32 (2)
H12'0.58900.97841.18960.071*0.32 (2)
C13'0.5538 (10)0.8169 (9)1.2143 (19)0.068 (5)0.32 (2)
H13'0.59200.77851.18920.082*0.32 (2)
C140.40078 (8)1.15400 (14)1.07344 (10)0.0362 (3)
H14A0.43991.10871.05740.043*
C150.34177 (8)1.17185 (14)1.01086 (10)0.0369 (3)
H15A0.34221.13950.95430.044*
C160.28195 (7)1.23815 (12)1.03276 (9)0.0281 (3)
C170.28502 (9)1.28120 (15)1.11918 (10)0.0386 (3)
H17A0.24581.32391.13810.046*
C180.34630 (9)1.26053 (15)1.17697 (10)0.0381 (3)
H18A0.34741.29151.23410.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.02889 (14)0.01737 (12)0.02410 (13)0.000−0.00451 (9)0.000
O10.0408 (6)0.0355 (5)0.0300 (5)−0.0014 (4)0.0041 (4)0.0005 (4)
O20.0581 (8)0.0690 (9)0.0398 (7)0.0156 (7)0.0004 (6)0.0141 (6)
O30.1288 (19)0.144 (2)0.1065 (16)0.0236 (16)0.0775 (15)−0.0159 (14)
O40.137 (2)0.150 (2)0.0493 (10)0.0023 (16)0.0364 (12)−0.0075 (12)
N10.0420 (9)0.0187 (7)0.0316 (8)0.000−0.0024 (7)0.000
N20.0347 (8)0.0192 (7)0.0354 (9)0.000−0.0011 (7)0.000
N30.0314 (6)0.0275 (6)0.0293 (6)0.0021 (4)−0.0044 (5)−0.0009 (4)
N40.0978 (16)0.0672 (12)0.0717 (13)−0.0167 (11)0.0522 (13)−0.0103 (10)
C10.0392 (7)0.0287 (7)0.0307 (7)−0.0045 (6)0.0006 (6)0.0000 (5)
C20.0435 (8)0.0259 (6)0.0352 (7)−0.0049 (6)0.0064 (6)0.0022 (6)
C30.0555 (10)0.0350 (8)0.0389 (8)−0.0080 (7)0.0121 (7)0.0018 (6)
C40.0668 (12)0.0365 (8)0.0559 (11)−0.0120 (8)0.0305 (9)−0.0021 (7)
C50.0527 (11)0.0418 (9)0.0863 (15)0.0012 (8)0.0290 (11)0.0038 (10)
C60.0469 (10)0.0475 (10)0.0699 (13)0.0050 (8)0.0040 (9)0.0080 (9)
C70.0486 (9)0.0386 (8)0.0434 (9)0.0020 (7)0.0042 (7)0.0044 (7)
C80.0541 (9)0.0223 (6)0.0304 (7)0.0012 (6)−0.0016 (6)−0.0023 (5)
C90.0573 (9)0.0219 (6)0.0315 (7)0.0014 (6)0.0009 (6)0.0038 (5)
C100.0404 (10)0.0184 (8)0.0361 (10)0.0000.0026 (8)0.000
C110.0418 (10)0.0178 (8)0.0342 (10)0.0000.0010 (8)0.000
C120.058 (3)0.0214 (12)0.0374 (18)−0.0007 (16)0.0131 (15)0.0017 (11)
C130.063 (3)0.0222 (13)0.0373 (18)0.0007 (16)0.0180 (15)−0.0022 (11)
C12'0.052 (6)0.024 (3)0.107 (12)−0.001 (4)0.035 (7)0.009 (6)
C13'0.062 (7)0.024 (3)0.126 (14)0.012 (4)0.050 (8)0.008 (6)
C140.0291 (7)0.0399 (8)0.0382 (8)0.0062 (6)−0.0050 (6)−0.0108 (6)
C150.0316 (7)0.0464 (8)0.0315 (7)0.0052 (6)−0.0048 (6)−0.0132 (6)
C160.0278 (6)0.0288 (6)0.0270 (6)0.0008 (5)−0.0028 (5)0.0014 (5)
C170.0379 (8)0.0490 (9)0.0281 (7)0.0165 (7)−0.0030 (6)−0.0023 (6)
C180.0414 (8)0.0461 (8)0.0254 (7)0.0123 (7)−0.0055 (6)−0.0040 (6)

Geometric parameters (Å, °)

Co1—O12.0553 (11)C7—H7A0.9300
Co1—O1i2.0553 (11)C8—C91.3824 (19)
Co1—N32.1627 (12)C8—H8A0.9300
Co1—N3i2.1627 (12)C9—C101.3925 (17)
Co1—N12.1807 (16)C9—H9A0.9300
Co1—N22.2074 (16)C10—C9i1.3925 (17)
O1—C11.2689 (18)C10—C111.482 (3)
O2—C11.2283 (19)C11—C13'ii1.359 (12)
O3—N41.206 (3)C11—C13'iii1.359 (11)
O4—N41.210 (3)C11—C13iii1.384 (5)
N1—C81.3398 (16)C11—C13ii1.384 (5)
N1—C8i1.3398 (16)C12—C131.375 (7)
N2—C12'1.315 (12)C12—H120.9300
N2—C12'i1.315 (12)C13—C11iv1.384 (5)
N2—C12i1.334 (5)C13—H130.9300
N2—C121.334 (5)C12'—C13'1.392 (16)
N3—C141.3280 (18)C12'—H12'0.9300
N3—C181.3370 (19)C13'—C11iv1.359 (11)
N4—C41.475 (3)C13'—H13'0.9300
C1—C21.523 (2)C14—C151.385 (2)
C2—C31.388 (2)C14—H14A0.9300
C2—C71.392 (2)C15—C161.390 (2)
C3—C41.380 (3)C15—H15A0.9300
C3—H3A0.9300C16—C171.388 (2)
C4—C51.377 (3)C16—C16v1.488 (2)
C5—C61.374 (3)C17—C181.379 (2)
C5—H5A0.9300C17—H17A0.9300
C6—C71.390 (2)C18—H18A0.9300
C6—H6A0.9300
O1—Co1—O1i176.35 (6)C5—C6—H6A119.9
O1—Co1—N393.46 (5)C7—C6—H6A119.9
O1i—Co1—N386.68 (5)C2—C7—C6120.74 (17)
O1—Co1—N3i86.67 (5)C2—C7—H7A119.6
O1i—Co1—N3i93.46 (5)C6—C7—H7A119.6
N3—Co1—N3i175.92 (6)N1—C8—C9123.08 (14)
O1—Co1—N191.82 (3)N1—C8—H8A118.5
O1i—Co1—N191.82 (3)C9—C8—H8A118.5
N3—Co1—N187.96 (3)C8—C9—C10119.11 (14)
N3i—Co1—N187.96 (3)C8—C9—H9A120.4
O1—Co1—N288.18 (3)C10—C9—H9A120.4
O1i—Co1—N288.18 (3)C9—C10—C9i117.92 (17)
N3—Co1—N292.04 (3)C9—C10—C11121.04 (9)
N3i—Co1—N292.04 (3)C9i—C10—C11121.04 (9)
N1—Co1—N2180.000 (1)C13'ii—C11—C13'iii116.3 (9)
C1—O1—Co1150.73 (10)C13'ii—C11—C13iii109.8 (6)
C8—N1—C8i117.69 (17)C13'iii—C11—C13ii109.8 (6)
C8—N1—Co1121.16 (8)C13iii—C11—C13ii116.7 (4)
C8i—N1—Co1121.16 (8)C13'ii—C11—C10121.9 (4)
C12'—N2—C12'i115.7 (10)C13'iii—C11—C10121.9 (5)
C12'—N2—C12i109.7 (5)C13iii—C11—C10121.7 (2)
C12'i—N2—C12109.7 (5)C13ii—C11—C10121.7 (2)
C12i—N2—C12115.9 (4)N2—C12—C13124.0 (4)
C12'—N2—Co1122.1 (5)N2—C12—H12118.0
C12'i—N2—Co1122.1 (5)C13—C12—H12118.0
C12i—N2—Co1122.1 (2)C12—C13—C11iv119.7 (4)
C12—N2—Co1122.1 (2)C12—C13—H13120.2
C14—N3—C18116.89 (12)C11iv—C13—H13120.2
C14—N3—Co1124.98 (10)N2—C12'—C13'123.8 (10)
C18—N3—Co1117.84 (9)N2—C12'—H12'118.1
O3—N4—O4122.7 (2)C13'—C12'—H12'118.1
O3—N4—C4118.7 (3)C11iv—C13'—C12'120.2 (9)
O4—N4—C4118.5 (2)C11iv—C13'—H13'119.9
O2—C1—O1126.93 (15)C12'—C13'—H13'119.9
O2—C1—C2118.91 (14)N3—C14—C15123.34 (13)
O1—C1—C2114.15 (13)N3—C14—H14A118.3
C3—C2—C7119.26 (15)C15—C14—H14A118.3
C3—C2—C1119.56 (14)C14—C15—C16119.93 (13)
C7—C2—C1121.18 (14)C14—C15—H15A120.0
C4—C3—C2118.41 (17)C16—C15—H15A120.0
C4—C3—H3A120.8C17—C16—C15116.37 (12)
C2—C3—H3A120.8C17—C16—C16v121.74 (15)
C3—C4—C5123.09 (18)C15—C16—C16v121.89 (16)
C3—C4—N4118.2 (2)C18—C17—C16119.94 (13)
C5—C4—N4118.7 (2)C18—C17—H17A120.0
C6—C5—C4118.21 (18)C16—C17—H17A120.0
C6—C5—H5A120.9N3—C18—C17123.48 (14)
C4—C5—H5A120.9N3—C18—H18A118.3
C5—C6—C7120.21 (19)C17—C18—H18A118.3

Symmetry codes: (i) −x+1, y, −z+5/2; (ii) x, y+1, z; (iii) −x+1, y+1, −z+5/2; (iv) x, y−1, z; (v) −x+1/2, −y+5/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2159).

References

  • Biradha, K., Seward, C. & Zaworotko, M. J. (1999). Angew. Chem. Int. Ed.38, 492–495.
  • Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2008). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography