PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2823.
Published online 2009 October 23. doi:  10.1107/S1600536809042548
PMCID: PMC2971111

N-(4-Methoxy­phen­yl)-tert-butane­sulfinamide

Abstract

In the title compound, C11H17NO2S, the mol­ecules inter­act head-to-tail through N—H(...)OS hydrogen bonds, giving discrete centrosymmetric cyclic dimers. The N—Car­yl bond length [1.4225 (14) Å] is inter­mediate between that in N-phenyl-tert-butane­sulfinamide [1.4083 (12) Å] and the N—Calk­yl bond lengths in N-alkyl­alkanesulfinamides (1.470–1.530 Å), suggesting weaker delocalization of electrons over the N atom and the aromatic ring due to the presence of the 4-meth­oxy group.

Related literature

For N-aryl­alkanesulfinamides, see: Datta et al. (2008 [triangle], 2009 [triangle]). For N-alkyl­alkanesulfinamides, see: Sato et al. (1975 [triangle]); Schuckmann et al. (1978 [triangle]); Ferreira et al. (2005 [triangle]). For the synthesis, see: Stretter et al. (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2823-scheme1.jpg

Experimental

Crystal data

  • C11H17NO2S
  • M r = 227.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2823-efi1.jpg
  • a = 19.6157 (11) Å
  • b = 9.1034 (5) Å
  • c = 13.3808 (7) Å
  • V = 2389.4 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 150 K
  • 0.70 × 0.37 × 0.33 mm

Data collection

  • Bruker APEXII CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.843, T max = 0.921
  • 26681 measured reflections
  • 3659 independent reflections
  • 3027 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.108
  • S = 1.05
  • 3659 reflections
  • 144 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042548/zs2015sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042548/zs2015Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MD and AJB thank KAIST for financial support.

supplementary crystallographic information

Comment

The molecular structure of (I) (Fig. 1) indicates a short N—Caryl bond (1.4225 (14) Å), in contrast with N—Calkyl bonds in N-alkylalkenesulfinamides (1.470–1.530 Å) (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). However, the N–Caryl bond in (I) is longer than its equivalent in N-phenyladamantane-1-sulfinamide (1.409 (2) Å) (Datta et al., 2008) and N-phenyl-tert-butanesulfinamide (1.4083 (12) Å) (Datta et al., 2009), suggesting weaker delocalization of electrons over N and the aromatic ring due to the presence of the para-methoxy group. The crystal packing shows an intermolecular head-to-tail cyclic interaction through N—H···OS hydrogen bonds, forming discrete centrosymmetric dimers (Fig. 2 and Table 1). There is no evidence of any formal hydrogen bonding involving the methoxy group, nor of weak intermolecular C—H···OS hydrogen bonding, as observed in the packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008).

Experimental

Compound (I) was prepared by the method of Stretter et al. (1969), using tert-butanesulfinyl chloride (281 mg, 2 mmol) and 4-methoxyaniline (492 mg, 4 mmol) in dry diethyl ether (30 ml). After 5 h reaction time (with TLC monitoring), the white solid amine salt was filtered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, 1% methanol-dichloromethane) yielded (I) as colourless crystals (420 mg (92%), m.p. 384 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in diethyl ether at room temperature. Spectroscopic analysis: FTIR (KBr) (cm-1) 3017, 1509, 1459, 1367, 1273, 1244, 1212, 1204, 1037, 866. 1H NMR (400 MHz, CDCl3, p.p.m. with respect to TMS) δ 6.96 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 5.20 (bs, 1H), 3.75 (s, 3H), 1.30 (s, 9H). 13C NMR (100 MHz, CDCl3, p.p.m. with respect to TMS) δ 156.2, 134.8, 121.5, 114.6, 56.2. 55.5, 22.4. EIMS m/z (%) 228 (MH+, 42), 227 (M+, 55), 122 (M+ - tBuSO, 100). These are the first recorded data for (I).

Refinement

H atoms were located in a difference Fourier map and refined geometrically using a riding model except for NH for which the coordinates were freely refined. Bond lengths and displacement parameters were constrained as follows: C—H = 0.95–0.98 Å and with Uiso (H) = 1.2 (1.5 for CH3) times Ueq(C, N).

Figures

Fig. 1.
Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The centrosymmetric cyclic dimer of (I) in the crystal packing, showing intermolecular hydrogen bonding as dashed lines. Symmetry code: (i) -x + 1, -y + 2, -z.

Crystal data

C11H17NO2SDx = 1.264 Mg m3
Mr = 227.32Melting point: 384 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6992 reflections
a = 19.6157 (11) Åθ = 2.5–30.4°
b = 9.1034 (5) ŵ = 0.25 mm1
c = 13.3808 (7) ÅT = 150 K
V = 2389.4 (2) Å3Block, colourless
Z = 80.70 × 0.37 × 0.33 mm
F(000) = 976

Data collection

Bruker APEXII CCD-detector diffractometer3659 independent reflections
Radiation source: fine-focus sealed tube3027 reflections with I > 2σ(I)
graphiteRint = 0.033
ω rotation with narrow frames scansθmax = 30.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)h = −27→27
Tmin = 0.843, Tmax = 0.921k = −13→12
26681 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.5032P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.37 e Å3
3659 reflectionsΔρmin = −0.38 e Å3
144 parametersExtinction correction: SHELXL97>/i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (8)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.55068 (4)1.13801 (9)0.06229 (6)0.02755 (19)
S10.613894 (14)1.06197 (3)0.02673 (2)0.02307 (10)
N10.59358 (6)0.89272 (11)−0.01268 (8)0.0256 (2)
H10.5522 (8)0.8854 (16)−0.0349 (11)0.031*
C10.61179 (5)0.77090 (13)0.04831 (8)0.0229 (2)
C20.56489 (6)0.65860 (12)0.06430 (9)0.0258 (2)
H20.52080.66520.03530.031*
C30.58165 (6)0.53688 (13)0.12200 (9)0.0281 (2)
H30.54910.46130.13280.034*
C40.64632 (6)0.52643 (13)0.16383 (9)0.0283 (2)
C50.69388 (6)0.63664 (14)0.14644 (9)0.0302 (3)
H50.73830.62880.17430.036*
C60.67709 (6)0.75779 (13)0.08881 (9)0.0275 (2)
H60.71010.83210.07680.033*
O20.66770 (5)0.41138 (10)0.22206 (8)0.0405 (2)
C110.61629 (8)0.32282 (15)0.26749 (11)0.0421 (3)
H11A0.58320.38620.30140.063*
H11B0.63740.25650.31620.063*
H11C0.59300.26500.21600.063*
C70.63507 (6)1.14369 (12)−0.09505 (8)0.0251 (2)
C80.57849 (6)1.11814 (14)−0.17123 (9)0.0296 (2)
H8A0.58771.1761−0.23140.044*
H8B0.53471.1482−0.14250.044*
H8C0.57671.0137−0.18870.044*
C90.70236 (7)1.07343 (15)−0.12670 (11)0.0351 (3)
H9A0.69630.9670−0.13300.053*
H9B0.73731.0941−0.07630.053*
H9C0.71671.1142−0.19120.053*
C100.64515 (7)1.30746 (13)−0.07418 (10)0.0321 (3)
H10A0.66451.3551−0.13340.048*
H10B0.67631.3198−0.01750.048*
H10C0.60111.3525−0.05820.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0260 (4)0.0291 (4)0.0275 (4)0.0000 (3)0.0027 (3)−0.0045 (3)
S10.02289 (15)0.02413 (15)0.02218 (15)−0.00033 (9)−0.00198 (9)−0.00084 (9)
N10.0277 (5)0.0220 (4)0.0272 (5)0.0001 (4)−0.0057 (4)0.0009 (4)
C10.0246 (5)0.0237 (5)0.0205 (5)0.0034 (4)0.0007 (4)−0.0007 (4)
C20.0238 (5)0.0256 (5)0.0279 (5)0.0019 (4)−0.0032 (4)−0.0012 (4)
C30.0282 (6)0.0250 (5)0.0310 (6)−0.0009 (4)−0.0030 (4)0.0013 (4)
C40.0305 (6)0.0272 (5)0.0272 (5)0.0059 (5)−0.0021 (4)0.0017 (4)
C50.0229 (5)0.0366 (6)0.0310 (6)0.0059 (5)−0.0022 (4)0.0030 (5)
C60.0220 (5)0.0309 (6)0.0295 (6)0.0003 (4)0.0022 (4)0.0028 (4)
O20.0408 (5)0.0357 (5)0.0451 (6)0.0047 (4)−0.0105 (4)0.0147 (4)
C110.0590 (9)0.0309 (6)0.0363 (7)−0.0034 (6)−0.0074 (6)0.0087 (5)
C70.0251 (5)0.0245 (5)0.0256 (5)−0.0002 (4)0.0021 (4)0.0009 (4)
C80.0336 (6)0.0314 (6)0.0238 (5)−0.0004 (5)−0.0017 (4)0.0017 (4)
C90.0274 (6)0.0388 (7)0.0392 (7)0.0021 (5)0.0070 (5)−0.0028 (5)
C100.0339 (6)0.0266 (5)0.0358 (6)−0.0045 (5)0.0021 (5)0.0007 (5)

Geometric parameters (Å, °)

O1—S11.4977 (9)O2—C111.4271 (18)
S1—N11.6765 (10)C11—H11A0.9800
S1—C71.8388 (11)C11—H11B0.9800
N1—C11.4225 (14)C11—H11C0.9800
N1—H10.867 (16)C7—C81.5246 (16)
C1—C21.3919 (16)C7—C91.5267 (17)
C1—C61.3960 (16)C7—C101.5296 (16)
C2—C31.3900 (16)C8—H8A0.9800
C2—H20.9500C8—H8B0.9800
C3—C41.3897 (17)C8—H8C0.9800
C3—H30.9500C9—H9A0.9800
C4—O21.3711 (14)C9—H9B0.9800
C4—C51.3896 (18)C9—H9C0.9800
C5—C61.3854 (16)C10—H10A0.9800
C5—H50.9500C10—H10B0.9800
C6—H60.9500C10—H10C0.9800
O1—S1—N1109.15 (5)O2—C11—H11C109.5
O1—S1—C7106.35 (5)H11A—C11—H11C109.5
N1—S1—C798.44 (5)H11B—C11—H11C109.5
C1—N1—S1118.44 (8)C8—C7—C9112.33 (10)
C1—N1—H1111.8 (10)C8—C7—C10111.40 (10)
S1—N1—H1113.7 (10)C9—C7—C10110.31 (10)
C2—C1—C6118.95 (11)C8—C7—S1111.49 (8)
C2—C1—N1119.66 (10)C9—C7—S1105.76 (8)
C6—C1—N1121.32 (11)C10—C7—S1105.17 (8)
C3—C2—C1120.96 (11)C7—C8—H8A109.5
C3—C2—H2119.5C7—C8—H8B109.5
C1—C2—H2119.5H8A—C8—H8B109.5
C4—C3—C2119.62 (11)C7—C8—H8C109.5
C4—C3—H3120.2H8A—C8—H8C109.5
C2—C3—H3120.2H8B—C8—H8C109.5
O2—C4—C5116.18 (11)C7—C9—H9A109.5
O2—C4—C3124.09 (11)C7—C9—H9B109.5
C5—C4—C3119.73 (11)H9A—C9—H9B109.5
C6—C5—C4120.56 (11)C7—C9—H9C109.5
C6—C5—H5119.7H9A—C9—H9C109.5
C4—C5—H5119.7H9B—C9—H9C109.5
C5—C6—C1120.14 (11)C7—C10—H10A109.5
C5—C6—H6119.9C7—C10—H10B109.5
C1—C6—H6119.9H10A—C10—H10B109.5
C4—O2—C11117.22 (11)C7—C10—H10C109.5
O2—C11—H11A109.5H10A—C10—H10C109.5
O2—C11—H11B109.5H10B—C10—H10C109.5
H11A—C11—H11B109.5
O1—S1—N1—C1−106.05 (9)C4—C5—C6—C10.60 (19)
C7—S1—N1—C1143.29 (9)C2—C1—C6—C5−1.93 (17)
S1—N1—C1—C2135.83 (10)N1—C1—C6—C5−178.79 (11)
S1—N1—C1—C6−47.33 (14)C5—C4—O2—C11160.40 (12)
C6—C1—C2—C31.88 (17)C3—C4—O2—C11−20.22 (18)
N1—C1—C2—C3178.79 (11)O1—S1—C7—C8−61.74 (9)
C1—C2—C3—C4−0.47 (18)N1—S1—C7—C851.16 (9)
C2—C3—C4—O2179.75 (12)O1—S1—C7—C9175.89 (8)
C2—C3—C4—C5−0.89 (18)N1—S1—C7—C9−71.21 (9)
O2—C4—C5—C6−179.76 (11)O1—S1—C7—C1059.13 (9)
C3—C4—C5—C60.83 (19)N1—S1—C7—C10172.03 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.867 (16)2.062 (17)2.9201 (14)170.1 (14)

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2015).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2034. [PMC free article] [PubMed]
  • Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393. [PMC free article] [PubMed]
  • Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J.11, 5269–5278. [PubMed]
  • Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.
  • Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber.102, 3357–3363.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography