PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1318.
Published online 2009 October 7. doi:  10.1107/S1600536809039841
PMCID: PMC2971109

Di-μ-nitrito-κ3 O:O,O′;κ3 O,O′:O-bis­{[2,6-bis­(pyrazol-1-yl-κN 2)pyridine-κN](nitrito-κ2 O,O′)cadmium(II)}

Abstract

In the title centrosymmetric binuclear complex, [Cd2(NO2)4(C11H9N5)2], the unique CdII ion is in a distorted dodeca­hedral CdN3O5 coordination environment. The two inversion-related CdII ions are separated by 3.9920 (6) Å and are bridged by two O atoms from two nitrite ligands. There are two types of π–π stacking inter­actions involving symmetry-related pyrazole rings, with centroid–centroid distances of 3.445 (2) and 3.431 (2) Å.

Related literature

For related structures, see: Yang & Sun (2008 [triangle]); Bessel et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1318-scheme1.jpg

Experimental

Crystal data

  • [Cd2(NO2)4(C11H9N5)2]
  • M r = 831.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1318-efi1.jpg
  • a = 7.7618 (13) Å
  • b = 9.5522 (16) Å
  • c = 10.9665 (19) Å
  • α = 110.285 (2)°
  • β = 90.616 (2)°
  • γ = 112.155 (2)°
  • V = 696.9 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.60 mm−1
  • T = 298 K
  • 0.32 × 0.21 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.628, T max = 0.856
  • 3815 measured reflections
  • 2666 independent reflections
  • 2468 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.076
  • S = 1.09
  • 2666 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039841/lh2917sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039841/lh2917Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 20971080).

supplementary crystallographic information

Comment

2,6-Dipyrazol-1-ylpyridine is expected be a useful tridentate ligand, but complexes with it as ligand to our knowledge are somewhat rare (e.g. Yang & Sun, 2008; Bessel et al., 1993). Our interest in complexes with 2,6-dipyrazol-1-ylpyridine as a ligand has motivated us to prepare the title complex, (I), and herein we report its crystal structure.

Fig. 1 shows the molecular structure of the title complex. Each CdII ion is coordinated by five O atoms and three N atoms in a distorted dodecahedral coordination environment (see Fig. 2). It is rare for CdII to assume this coordination mode. Fig. 1 also shows that two nitrite anions function as bridging ligands, linking two inversion related CdII ions with a separation of 3.9920 (6) Å leading to a binuclear CdII complex. In the crystal there are the strong π–π stacking interactions involving the symmetry related triazole rings, with the relevant distances being Cg1···Cg2i = 3.445 (2) Å, Cg2···Cg2ii = 3.431 (2) Å, Cg1···Cg2iperp = 3.299 Å and Cg2···Cg2iiperp = 3.274 Å (symmetric codes: (i) -1+x, y, z; (ii) 1-x, 1-y, 2-z; Cg1 and Cg2 are the centroids of C1-C3/N1/N2; C9-C11/N4/N5 triazole rings, respectively; Cgi···Cgjperp is the perpendicular distance from Cgi ring to Cgj ring).

Experimental

10 ml dichloromethane solution of 2,6-Dipyrazol-1-ylpyridine (0.0692 g, 0.328 mmol) was added into 10 ml methanol solution containing Cd(ClO4).6H2O (0.0740 g, 0.176 mmol) and sodium nitrite (0.0138 g, 0.200 mmol) and the mixed soluton was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about one month.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, Uiso = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1 - x, 2 - y, 2 - z
Fig. 2.
The coordination environment of CdII

Crystal data

[Cd2(NO2)4(C11H9N5)2]Z = 1
Mr = 831.30F(000) = 408
Triclinic, P1Dx = 1.981 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7618 (13) ÅCell parameters from 2504 reflections
b = 9.5522 (16) Åθ = 2.5–27.8°
c = 10.9665 (19) ŵ = 1.60 mm1
α = 110.285 (2)°T = 298 K
β = 90.616 (2)°Block, colorless
γ = 112.155 (2)°0.32 × 0.21 × 0.10 mm
V = 696.9 (2) Å3

Data collection

Bruker SMART APEX CCD diffractometer2666 independent reflections
Radiation source: fine-focus sealed tube2468 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.628, Tmax = 0.856k = −11→11
3815 measured reflectionsl = −7→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.044P)2] where P = (Fo2 + 2Fc2)/3
2666 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0700 (5)0.7853 (5)0.7004 (4)0.0445 (8)
H1−0.03640.89740.73450.053*
C2−0.2364 (5)0.6713 (5)0.6144 (4)0.0454 (8)
H2−0.33150.69200.58170.055*
C3−0.2301 (4)0.5239 (5)0.5885 (3)0.0431 (8)
H3−0.32070.42270.53380.052*
C40.0015 (4)0.4386 (4)0.6698 (3)0.0296 (6)
C50.2520 (4)0.4068 (3)0.7464 (3)0.0298 (6)
C60.1560 (4)0.2398 (4)0.7011 (4)0.0405 (7)
H60.21250.17360.71170.049*
C7−0.0287 (5)0.1747 (4)0.6390 (3)0.0449 (8)
H7−0.09840.06230.60740.054*
C8−0.1103 (5)0.2735 (4)0.6234 (3)0.0410 (8)
H8−0.23500.23110.58350.049*
C90.5554 (4)0.4211 (4)0.8411 (3)0.0357 (7)
H90.52910.31050.81420.043*
C100.7180 (4)0.5479 (4)0.9151 (3)0.0373 (7)
H100.82470.54190.94810.045*
C110.6898 (4)0.6888 (4)0.9306 (3)0.0364 (7)
H110.77810.79450.97780.044*
Cd10.35091 (3)0.79984 (2)0.84217 (2)0.03281 (10)
N10.0340 (4)0.7146 (3)0.7277 (3)0.0374 (6)
N2−0.0654 (3)0.5526 (3)0.6580 (3)0.0340 (6)
N30.1788 (3)0.5057 (3)0.7307 (2)0.0290 (5)
N40.4388 (3)0.4869 (3)0.8142 (2)0.0291 (5)
N50.5215 (3)0.6530 (3)0.8697 (2)0.0323 (5)
N60.2056 (4)0.8778 (4)1.0874 (3)0.0506 (7)
N70.4464 (4)0.9665 (4)0.6637 (3)0.0485 (7)
O10.1706 (4)0.7339 (3)1.0265 (3)0.0568 (7)
O20.3107 (4)0.9700 (3)1.0329 (3)0.0542 (7)
O30.3877 (4)1.0225 (3)0.7663 (3)0.0506 (6)
O40.4610 (4)0.8348 (3)0.6500 (3)0.0491 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0479 (19)0.048 (2)0.054 (2)0.0301 (17)0.0146 (16)0.0260 (18)
C20.0422 (18)0.062 (2)0.048 (2)0.0337 (17)0.0107 (15)0.0256 (18)
C30.0323 (16)0.056 (2)0.0377 (18)0.0187 (16)0.0004 (14)0.0135 (16)
C40.0314 (14)0.0328 (15)0.0262 (14)0.0157 (13)0.0086 (12)0.0100 (12)
C50.0325 (14)0.0285 (14)0.0298 (14)0.0139 (12)0.0074 (12)0.0110 (12)
C60.0434 (18)0.0305 (15)0.0486 (19)0.0162 (14)0.0023 (15)0.0147 (14)
C70.0458 (19)0.0280 (16)0.051 (2)0.0087 (14)−0.0021 (16)0.0111 (15)
C80.0353 (16)0.0388 (18)0.0395 (18)0.0087 (14)−0.0009 (14)0.0112 (15)
C90.0379 (16)0.0376 (16)0.0449 (18)0.0231 (14)0.0152 (14)0.0219 (15)
C100.0312 (15)0.0472 (19)0.0455 (18)0.0210 (14)0.0100 (14)0.0256 (16)
C110.0314 (15)0.0367 (16)0.0412 (17)0.0109 (13)0.0041 (13)0.0182 (14)
Cd10.03791 (15)0.02645 (14)0.03535 (15)0.01474 (11)0.00396 (10)0.01137 (10)
N10.0360 (14)0.0340 (14)0.0457 (16)0.0174 (12)0.0059 (12)0.0158 (12)
N20.0312 (13)0.0396 (14)0.0345 (14)0.0175 (12)0.0061 (11)0.0144 (12)
N30.0303 (12)0.0283 (12)0.0305 (13)0.0138 (10)0.0043 (10)0.0115 (10)
N40.0302 (12)0.0271 (12)0.0338 (13)0.0136 (10)0.0055 (10)0.0137 (11)
N50.0324 (13)0.0262 (12)0.0396 (14)0.0120 (11)0.0054 (11)0.0138 (11)
N60.0513 (18)0.0524 (19)0.0435 (17)0.0200 (15)0.0137 (14)0.0140 (15)
N70.0554 (18)0.0436 (17)0.0508 (18)0.0175 (15)0.0031 (15)0.0257 (15)
O10.0566 (16)0.0422 (15)0.0591 (17)0.0080 (13)0.0077 (13)0.0181 (14)
O20.0708 (17)0.0338 (13)0.0464 (14)0.0131 (12)0.0090 (13)0.0108 (11)
O30.0584 (15)0.0340 (12)0.0602 (17)0.0202 (12)0.0044 (13)0.0171 (12)
O40.0610 (16)0.0464 (14)0.0462 (14)0.0291 (13)0.0099 (12)0.0166 (12)

Geometric parameters (Å, °)

C1—N11.320 (4)C9—C101.364 (4)
C1—C21.395 (5)C9—H90.9300
C1—H10.9300C10—C111.397 (5)
C2—C31.357 (5)C10—H100.9300
C2—H20.9300C11—N51.325 (4)
C3—N21.364 (4)C11—H110.9300
C3—H30.9300Cd1—O22.270 (3)
C4—N31.330 (4)Cd1—N52.345 (2)
C4—C81.379 (4)Cd1—O42.365 (3)
C4—N21.413 (4)Cd1—N32.434 (2)
C5—N31.328 (4)Cd1—N12.450 (3)
C5—C61.376 (4)Cd1—O32.464 (2)
C5—N41.409 (4)Cd1—O12.592 (3)
C6—C71.385 (4)N1—N21.357 (4)
C6—H60.9300N4—N51.361 (3)
C7—C81.371 (5)N6—O11.220 (4)
C7—H70.9300N6—O21.277 (4)
C8—H80.9300N7—O31.240 (4)
C9—N41.361 (4)N7—O41.264 (4)
N1—C1—C2111.8 (3)O4—Cd1—N393.58 (9)
N1—C1—H1124.1O2—Cd1—N194.34 (10)
C2—C1—H1124.1N5—Cd1—N1132.58 (9)
C3—C2—C1105.3 (3)O4—Cd1—N186.53 (9)
C3—C2—H2127.3N3—Cd1—N165.49 (8)
C1—C2—H2127.3O2—Cd1—O383.63 (9)
C2—C3—N2106.8 (3)N5—Cd1—O3139.36 (9)
C2—C3—H3126.6O4—Cd1—O351.23 (9)
N2—C3—H3126.6N3—Cd1—O3130.34 (8)
N3—C4—C8124.0 (3)N1—Cd1—O377.14 (8)
N3—C4—N2113.9 (3)O2—Cd1—O150.02 (9)
C8—C4—N2122.2 (3)N5—Cd1—O187.76 (9)
N3—C5—C6123.6 (3)O4—Cd1—O1169.63 (9)
N3—C5—N4114.4 (2)N3—Cd1—O180.15 (8)
C6—C5—N4122.0 (3)N1—Cd1—O183.36 (9)
C5—C6—C7117.0 (3)O3—Cd1—O1127.86 (9)
C5—C6—H6121.5C1—N1—N2104.8 (3)
C7—C6—H6121.5C1—N1—Cd1137.4 (2)
C8—C7—C6121.0 (3)N2—N1—Cd1117.31 (18)
C8—C7—H7119.5N1—N2—C3111.2 (3)
C6—C7—H7119.5N1—N2—C4120.0 (2)
C7—C8—C4116.8 (3)C3—N2—C4128.7 (3)
C7—C8—H8121.6C5—N3—C4117.6 (3)
C4—C8—H8121.6C5—N3—Cd1119.45 (19)
N4—C9—C10107.1 (3)C4—N3—Cd1122.21 (19)
N4—C9—H9126.4C9—N4—N5111.0 (2)
C10—C9—H9126.4C9—N4—C5128.9 (3)
C9—C10—C11105.3 (3)N5—N4—C5120.0 (2)
C9—C10—H10127.4C11—N5—N4105.1 (2)
C11—C10—H10127.4C11—N5—Cd1136.3 (2)
N5—C11—C10111.5 (3)N4—N5—Cd1118.55 (17)
N5—C11—H11124.2O1—N6—O2112.5 (3)
C10—C11—H11124.2O3—N7—O4113.2 (3)
O2—Cd1—N5114.66 (9)N6—O1—Cd191.5 (2)
O2—Cd1—O4133.53 (9)N6—O2—Cd1105.9 (2)
N5—Cd1—O497.45 (9)N7—O3—Cd195.73 (19)
O2—Cd1—N3128.85 (8)N7—O4—Cd199.9 (2)
N5—Cd1—N367.11 (8)
N1—C1—C2—C3−0.3 (4)O1—Cd1—N3—C483.5 (2)
C1—C2—C3—N20.2 (4)C10—C9—N4—N5−0.4 (3)
N3—C5—C6—C7−1.7 (5)C10—C9—N4—C5−176.8 (3)
N4—C5—C6—C7178.2 (3)N3—C5—N4—C9−176.9 (3)
C5—C6—C7—C80.3 (5)C6—C5—N4—C93.2 (5)
C6—C7—C8—C41.3 (5)N3—C5—N4—N57.0 (4)
N3—C4—C8—C7−1.8 (5)C6—C5—N4—N5−172.9 (3)
N2—C4—C8—C7179.1 (3)C10—C11—N5—N40.2 (4)
N4—C9—C10—C110.5 (4)C10—C11—N5—Cd1179.2 (2)
C9—C10—C11—N5−0.5 (4)C9—N4—N5—C110.1 (3)
C2—C1—N1—N20.3 (4)C5—N4—N5—C11176.8 (3)
C2—C1—N1—Cd1171.8 (2)C9—N4—N5—Cd1−179.10 (18)
O2—Cd1—N1—C155.0 (4)C5—N4—N5—Cd1−2.4 (3)
N5—Cd1—N1—C1−175.4 (3)O2—Cd1—N5—C11−56.5 (3)
O4—Cd1—N1—C1−78.5 (3)O4—Cd1—N5—C1189.0 (3)
N3—Cd1—N1—C1−174.0 (4)N3—Cd1—N5—C11179.8 (3)
O3—Cd1—N1—C1−27.5 (3)N1—Cd1—N5—C11−178.9 (3)
O1—Cd1—N1—C1103.8 (3)O3—Cd1—N5—C1153.8 (4)
O2—Cd1—N1—N2−134.3 (2)O1—Cd1—N5—C11−100.0 (3)
N5—Cd1—N1—N2−4.7 (3)O2—Cd1—N5—N4122.4 (2)
O4—Cd1—N1—N292.3 (2)O4—Cd1—N5—N4−92.1 (2)
N3—Cd1—N1—N2−3.3 (2)N3—Cd1—N5—N4−1.34 (19)
O3—Cd1—N1—N2143.2 (2)N1—Cd1—N5—N40.1 (3)
O1—Cd1—N1—N2−85.4 (2)O3—Cd1—N5—N4−127.3 (2)
C1—N1—N2—C3−0.1 (4)O1—Cd1—N5—N478.9 (2)
Cd1—N1—N2—C3−173.6 (2)O2—N6—O1—Cd1−3.4 (3)
C1—N1—N2—C4−176.7 (3)O2—Cd1—O1—N62.3 (2)
Cd1—N1—N2—C49.8 (3)N5—Cd1—O1—N6127.6 (2)
C2—C3—N2—N1−0.1 (4)O4—Cd1—O1—N6−112.0 (5)
C2—C3—N2—C4176.1 (3)N3—Cd1—O1—N6−165.3 (2)
N3—C4—N2—N1−12.6 (4)N1—Cd1—O1—N6−99.1 (2)
C8—C4—N2—N1166.5 (3)O3—Cd1—O1—N6−31.1 (3)
N3—C4—N2—C3171.5 (3)O1—N6—O2—Cd14.0 (3)
C8—C4—N2—C3−9.4 (5)N5—Cd1—O2—N6−66.1 (2)
C6—C5—N3—C41.3 (5)O4—Cd1—O2—N6164.6 (2)
N4—C5—N3—C4−178.6 (2)N3—Cd1—O2—N613.5 (3)
C6—C5—N3—Cd1171.7 (3)N1—Cd1—O2—N675.3 (2)
N4—C5—N3—Cd1−8.2 (3)O3—Cd1—O2—N6151.8 (2)
C8—C4—N3—C50.6 (4)O1—Cd1—O2—N6−2.3 (2)
N2—C4—N3—C5179.7 (3)O4—N7—O3—Cd1−1.1 (3)
C8—C4—N3—Cd1−169.6 (2)O2—Cd1—O3—N7168.8 (2)
N2—C4—N3—Cd19.5 (3)N5—Cd1—O3—N747.8 (3)
O2—Cd1—N3—C5−98.7 (2)O4—Cd1—O3—N70.71 (19)
N5—Cd1—N3—C55.3 (2)N3—Cd1—O3—N7−54.0 (2)
O4—Cd1—N3—C5101.9 (2)N1—Cd1—O3—N7−95.2 (2)
N1—Cd1—N3—C5−173.6 (2)O1—Cd1—O3—N7−166.11 (18)
O3—Cd1—N3—C5141.5 (2)O3—N7—O4—Cd11.2 (3)
O1—Cd1—N3—C5−86.4 (2)O2—Cd1—O4—N7−17.1 (3)
O2—Cd1—N3—C471.3 (2)N5—Cd1—O4—N7−151.9 (2)
N5—Cd1—N3—C4175.2 (2)N3—Cd1—O4—N7140.7 (2)
O4—Cd1—N3—C4−88.2 (2)N1—Cd1—O4—N775.6 (2)
N1—Cd1—N3—C4−3.6 (2)O3—Cd1—O4—N7−0.70 (19)
O3—Cd1—N3—C4−48.5 (3)O1—Cd1—O4—N788.4 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2917).

References

  • Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1563–1576.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, Z. N. & Sun, T. T. (2008). Acta Cryst. E64, m1374. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography