PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2780.
Published online 2009 October 17. doi:  10.1107/S1600536809042184
PMCID: PMC2971107

2-Bromo-1,2-diphenylethenyl 4-methyl­phenyl sulfoxide

Abstract

In the title compound, C21H17BrO2S, the two phenyl rings attached to the ethene group are oriented at dihedral angles of 76.19 (10) and 57.99 (8)° with respect to the Br—C=C—S plane [r.m.s. deviation 0.003 Å]. The sulfonyl-bound phenyl ring forms a dihedral angle of 83.26 (8)° with the above plane. The crystal structure is stabilized by weak C—H(...)π inter­actions.

Related literature

For the anti­bacterial activity of sulfone compounds, see: Mandell & Sande (1985 [triangle]). For a related structure, see: Wolf (1999 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2780-scheme1.jpg

Experimental

Crystal data

  • C21H17BrO2S
  • M r = 413.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2780-efi1.jpg
  • a = 21.561 (9) Å
  • b = 8.505 (4) Å
  • c = 21.134 (10) Å
  • β = 106.044 (9)°
  • V = 3725 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.33 mm−1
  • T = 300 K
  • 0.15 × 0.12 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS, Bruker, 2001 [triangle]) T min = 0.661, T max = 0.820
  • 12736 measured reflections
  • 4273 independent reflections
  • 2826 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.109
  • S = 1.01
  • 4273 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker 2001 [triangle]); cell refinement: SAINT (Bruker 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]), PARST (Nardelli, 1995 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042184/ci2936sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042184/ci2936Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MK thanks Ed. CEL, New Delhi, for sponsoring a visit to Yangon University, Myanmar.

supplementary crystallographic information

Comment

Sulfone compounds, similar to sulfonamides, show strong in vitro and in vivo antibacterial activity, and for almost 60 years they have been used successfully in medicine (Mandell & Sande, 1985). Certain sulfones also exhibit fungicidal activity.

The separation of the Br and S1 atoms [3.371 (2) Å] is less than the sum of their respective van der Waals radii 3.65 Å. Shortening of this interatomic distance has often been observed in α,α-unsubstituted β-ketosulfones and is usually explained by hyperconjugative cross-interaction involving the π*(C2—Br)–σ(S1—C1) and π(C2—Br)–σ*(S1—C1) pairs of bonding and non-bonding molecular orbitals. According to general theory of the anomeric effect, the largest overlapping of these orbitals should occur when the interacting polar bonds are situated in the gauche position. However, in the title compound, the S1—C1 and C2—Br bonds are almost planar [the S1—C1—C2—Br torsion angle is 0.9 (3)°]. The only existing gauche interactions involve S1O1 with the C1—C2 and C1—C9 bonds. In addition, the O1···C9 non-bonding distance [3.827 (2) Å] is much longer than the sum of the respective van der Waals radii (3.22 Å). Therefore, the main electronic interaction, despite the unfavoured planar arrangement, should be the Coulombic type, weak electronic interaction of the negatively charged bromine atom and the highly positive S atom, that is responsible for the electron-density transfer from the sulfonyl group towards the bromine atom. All the above features are similar to those reported for 4'-{[benzoyl(4-tolyl-hydrazono)methyl]sulfonyl}acetanilide (Wolf, 1999, and references thererin). The bond lengths are consistent with values reported by Allen et al. (1987), and indicate high level of electron-density delocalization which exists in the planar phenyl rings attached to the ethene group.

Experimental

cis-Stilbene (4 g) was reacted with bromine (5 g) at 283 K to obtain dibromostilbene. The resultant compound was refluxed with paramethylphenyl sodium sulphonate (4.5 g) for 6 h. The reaction mixture was condensed to yield 5 mg of the title compound and was recrystallized from methanol.

Refinement

H-atoms were positioned at calculated positions [C—H = 0.93 Å (aromatic) and 0.96 Å (methyl)] and refined as riding with Uiso(H) = 1.2Ueq(Caromatic) and Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C21H17BrO2SF(000) = 1680
Mr = 413.32Dx = 1.474 Mg m3Dm = 1.48 Mg m3Dm measured by not measured
Monoclinic, C2/cMelting point: 500 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.561 (9) ÅCell parameters from 4223 reflections
b = 8.505 (4) Åθ = 2–25°
c = 21.134 (10) ŵ = 2.33 mm1
β = 106.044 (9)°T = 300 K
V = 3725 (3) Å3Plate, colourless
Z = 80.15 × 0.12 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer4273 independent reflections
Radiation source: fine-focus sealed tube2826 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS, Bruker, 2001)h = −28→27
Tmin = 0.661, Tmax = 0.820k = −11→11
12736 measured reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0592P)2] where P = (Fo2 + 2Fc2)/3
4273 reflections(Δ/σ)max = 0.008
227 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.11848 (11)0.3985 (3)0.54204 (12)0.0459 (6)
C90.09957 (13)0.2624 (3)0.49692 (13)0.0500 (6)
C30.12159 (11)0.5778 (3)0.44958 (12)0.0440 (6)
C20.12993 (11)0.5387 (3)0.51983 (12)0.0458 (6)
C40.06193 (13)0.5579 (3)0.40419 (13)0.0514 (6)
H40.02730.51940.41770.062*
C60.10397 (15)0.6526 (4)0.31844 (14)0.0645 (8)
H60.09810.67820.27440.077*
C100.03670 (16)0.2091 (4)0.47825 (15)0.0657 (8)
H100.00560.25830.49430.079*
C80.17237 (13)0.6357 (3)0.42858 (14)0.0534 (7)
H80.21260.64970.45860.064*
C130.1272 (3)0.0614 (5)0.4310 (2)0.0968 (13)
H130.15790.01170.41460.116*
C70.16352 (16)0.6726 (4)0.36342 (15)0.0635 (8)
H70.19790.71130.34950.076*
C50.05398 (13)0.5952 (4)0.33917 (14)0.0606 (7)
H50.01390.58110.30890.073*
C140.14498 (17)0.1862 (4)0.47292 (17)0.0698 (9)
H140.18770.21980.48530.084*
C120.0654 (3)0.0094 (5)0.41319 (19)0.1024 (14)
H120.0542−0.07700.38540.123*
C110.0197 (2)0.0831 (4)0.43584 (18)0.0896 (12)
H11−0.02290.04870.42280.108*
S10.12699 (3)0.35497 (10)0.62701 (3)0.0549 (2)
O20.10422 (10)0.1974 (3)0.62829 (10)0.0762 (7)
O10.09830 (8)0.4768 (3)0.65579 (9)0.0712 (6)
C150.21083 (12)0.3535 (3)0.66457 (12)0.0480 (6)
C190.31330 (15)0.2364 (4)0.67791 (16)0.0632 (8)
H190.33880.16010.66590.076*
C200.24851 (14)0.2377 (3)0.64798 (15)0.0574 (7)
H200.23000.16170.61690.069*
C180.34187 (13)0.3447 (4)0.72521 (15)0.0608 (7)
C160.23801 (13)0.4638 (4)0.71088 (13)0.0614 (7)
H160.21270.54210.72190.074*
C170.30353 (14)0.4575 (4)0.74120 (15)0.0695 (8)
H170.32200.53160.77320.083*
C210.41371 (15)0.3392 (5)0.7578 (2)0.0926 (12)
H21A0.42740.43690.78010.139*
H21B0.43620.32260.72500.139*
H21C0.42320.25460.78910.139*
Br0.158444 (16)0.71426 (4)0.575988 (15)0.07199 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0358 (12)0.0608 (16)0.0377 (14)−0.0047 (11)0.0045 (11)0.0023 (12)
C90.0575 (16)0.0513 (15)0.0386 (15)−0.0036 (12)0.0089 (13)0.0057 (11)
C30.0453 (14)0.0448 (13)0.0384 (14)−0.0040 (11)0.0057 (11)−0.0029 (11)
C20.0351 (12)0.0582 (16)0.0393 (14)−0.0076 (11)0.0025 (11)−0.0033 (12)
C40.0445 (14)0.0641 (17)0.0430 (15)−0.0024 (12)0.0077 (12)0.0001 (13)
C60.076 (2)0.0751 (19)0.0416 (16)0.0031 (16)0.0147 (16)0.0003 (14)
C100.070 (2)0.0679 (19)0.0540 (19)−0.0146 (16)0.0086 (16)−0.0039 (15)
C80.0487 (15)0.0611 (17)0.0465 (16)−0.0117 (12)0.0067 (12)−0.0028 (13)
C130.157 (4)0.062 (2)0.086 (3)0.016 (2)0.057 (3)0.002 (2)
C70.0661 (19)0.073 (2)0.0571 (19)−0.0133 (15)0.0270 (16)−0.0028 (15)
C50.0522 (16)0.080 (2)0.0426 (16)0.0032 (14)0.0011 (13)−0.0013 (14)
C140.080 (2)0.068 (2)0.065 (2)0.0041 (16)0.0277 (18)0.0069 (16)
C120.193 (5)0.053 (2)0.063 (2)−0.025 (3)0.039 (3)−0.0082 (17)
C110.120 (3)0.074 (2)0.062 (2)−0.040 (2)0.004 (2)−0.0026 (18)
S10.0430 (4)0.0810 (5)0.0379 (4)−0.0120 (3)0.0064 (3)0.0061 (3)
O20.0724 (14)0.0939 (17)0.0528 (13)−0.0361 (12)0.0013 (11)0.0181 (11)
O10.0492 (11)0.1182 (18)0.0501 (12)0.0083 (11)0.0201 (10)−0.0003 (12)
C150.0441 (14)0.0618 (16)0.0341 (13)−0.0061 (12)0.0040 (11)0.0036 (12)
C190.0581 (18)0.0678 (19)0.062 (2)0.0121 (14)0.0142 (16)0.0040 (15)
C200.0605 (18)0.0576 (17)0.0497 (17)−0.0025 (13)0.0077 (14)−0.0031 (13)
C180.0455 (15)0.079 (2)0.0522 (18)−0.0030 (15)0.0040 (13)0.0099 (16)
C160.0529 (16)0.078 (2)0.0465 (17)0.0060 (14)0.0023 (13)−0.0129 (14)
C170.0566 (17)0.085 (2)0.0548 (19)−0.0065 (16)−0.0054 (14)−0.0188 (16)
C210.0491 (18)0.127 (3)0.088 (3)0.000 (2)−0.0033 (18)0.009 (2)
Br0.0854 (3)0.0743 (2)0.0511 (2)−0.02668 (16)0.01018 (17)−0.01482 (14)

Geometric parameters (Å, °)

C1—C21.330 (4)C5—H50.93
C1—C91.483 (4)C14—H140.93
C1—S11.793 (3)C12—C111.362 (6)
C9—C101.379 (4)C12—H120.93
C9—C141.382 (4)C11—H110.93
C3—C81.381 (3)S1—O11.426 (2)
C3—C41.386 (3)S1—O21.430 (2)
C3—C21.483 (3)S1—C151.762 (3)
C2—Br1.901 (3)C15—C161.365 (4)
C4—C51.374 (4)C15—C201.382 (4)
C4—H40.93C19—C201.365 (4)
C6—C51.361 (4)C19—C181.373 (4)
C6—C71.381 (4)C19—H190.93
C6—H60.93C20—H200.93
C10—C111.380 (5)C18—C171.368 (4)
C10—H100.93C18—C211.512 (4)
C8—C71.373 (4)C16—C171.382 (4)
C8—H80.93C16—H160.93
C13—C121.356 (6)C17—H170.93
C13—C141.367 (5)C21—H21A0.96
C13—H130.93C21—H21B0.96
C7—H70.93C21—H21C0.96
C2—C1—C9121.2 (2)C13—C12—C11120.2 (4)
C2—C1—S1124.1 (2)C13—C12—H12119.9
C9—C1—S1114.63 (18)C11—C12—H12119.9
C10—C9—C14118.7 (3)C12—C11—C10119.8 (4)
C10—C9—C1120.9 (3)C12—C11—H11120.1
C14—C9—C1120.3 (3)C10—C11—H11120.1
C8—C3—C4119.2 (2)O1—S1—O2118.75 (14)
C8—C3—C2120.9 (2)O1—S1—C15108.95 (13)
C4—C3—C2119.9 (2)O2—S1—C15107.45 (14)
C1—C2—C3124.9 (2)O1—S1—C1109.93 (13)
C1—C2—Br122.9 (2)O2—S1—C1105.77 (12)
C3—C2—Br112.19 (18)C15—S1—C1105.13 (11)
C5—C4—C3120.0 (2)C16—C15—C20120.4 (2)
C5—C4—H4120.0C16—C15—S1120.1 (2)
C3—C4—H4120.0C20—C15—S1119.5 (2)
C5—C6—C7119.4 (3)C20—C19—C18121.8 (3)
C5—C6—H6120.3C20—C19—H19119.1
C7—C6—H6120.3C18—C19—H19119.1
C9—C10—C11120.3 (3)C19—C20—C15119.1 (3)
C9—C10—H10119.8C19—C20—H20120.5
C11—C10—H10119.8C15—C20—H20120.5
C7—C8—C3120.1 (3)C17—C18—C19118.0 (3)
C7—C8—H8120.0C17—C18—C21121.5 (3)
C3—C8—H8120.0C19—C18—C21120.5 (3)
C12—C13—C14120.7 (4)C15—C16—C17119.1 (3)
C12—C13—H13119.6C15—C16—H16120.4
C14—C13—H13119.6C17—C16—H16120.4
C8—C7—C6120.5 (3)C18—C17—C16121.5 (3)
C8—C7—H7119.8C18—C17—H17119.2
C6—C7—H7119.8C16—C17—H17119.2
C6—C5—C4120.9 (3)C18—C21—H21A109.5
C6—C5—H5119.5C18—C21—H21B109.5
C4—C5—H5119.5H21A—C21—H21B109.5
C13—C14—C9120.1 (4)C18—C21—H21C109.5
C13—C14—H14119.9H21A—C21—H21C109.5
C9—C14—H14119.9H21B—C21—H21C109.5
C2—C1—C9—C10−105.1 (3)C14—C13—C12—C111.3 (6)
S1—C1—C9—C1077.0 (3)C13—C12—C11—C10−1.4 (6)
C2—C1—C9—C1475.1 (3)C9—C10—C11—C121.1 (5)
S1—C1—C9—C14−102.8 (3)C2—C1—S1—O145.3 (2)
C9—C1—C2—C33.9 (4)C9—C1—S1—O1−136.93 (19)
S1—C1—C2—C3−178.41 (19)C2—C1—S1—O2174.6 (2)
C9—C1—C2—Br−176.77 (18)C9—C1—S1—O2−7.6 (2)
S1—C1—C2—Br0.9 (3)C2—C1—S1—C15−71.9 (2)
C8—C3—C2—C1−122.7 (3)C9—C1—S1—C15105.9 (2)
C4—C3—C2—C158.0 (4)O1—S1—C15—C16−3.0 (3)
C8—C3—C2—Br57.9 (3)O2—S1—C15—C16−132.9 (2)
C4—C3—C2—Br−121.4 (2)C1—S1—C15—C16114.8 (2)
C8—C3—C4—C50.2 (4)O1—S1—C15—C20175.4 (2)
C2—C3—C4—C5179.5 (3)O2—S1—C15—C2045.5 (2)
C14—C9—C10—C11−0.7 (5)C1—S1—C15—C20−66.8 (2)
C1—C9—C10—C11179.5 (3)C18—C19—C20—C151.6 (5)
C4—C3—C8—C7−0.1 (4)C16—C15—C20—C19−0.9 (4)
C2—C3—C8—C7−179.4 (3)S1—C15—C20—C19−179.2 (2)
C3—C8—C7—C60.1 (5)C20—C19—C18—C17−1.1 (5)
C5—C6—C7—C8−0.3 (5)C20—C19—C18—C21179.5 (3)
C7—C6—C5—C40.4 (5)C20—C15—C16—C17−0.4 (4)
C3—C4—C5—C6−0.4 (4)S1—C15—C16—C17178.0 (2)
C12—C13—C14—C9−0.9 (6)C19—C18—C17—C16−0.2 (5)
C10—C9—C14—C130.6 (5)C21—C18—C17—C16179.2 (3)
C1—C9—C14—C13−179.6 (3)C15—C16—C17—C180.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.913.608 (5)133
C19—H19···Cg1ii0.932.883.786 (4)166

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2936).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mandell, G. L. & Sande, M. A. (1985). The Pharmacological Basis of Therapeutics, edited by A. G. Gilman, L. S. Goodman, T. W. Rall & F. Murad, pp. 1212–1213. New York: MacMillan.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wolf, W. M. (1999). Acta Cryst. C55, 469–472.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography