PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1278.
Published online 2009 October 3. doi:  10.1107/S1600536809039129
PMCID: PMC2971105

Aqua{5,5′-dimethoxy-2,2-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)

Abstract

The title mononuclear nickel(II) complex, [Ni(C18H18N2O4)(H2O)], possesses crystallographic mirror symmetry. The Ni atom is five-coordinated in a square-pyramidal geometry, with two imine N and two phenolate O atoms of the Schiff base ligand in the square plane, and the water O atom in the axial position. In the crystal, the mol­ecules are linked via inter­molecular O—H(...)O hydrogen bonds, forming chains along the a axis.

Related literature

For related structures, see: Angulo et al. (2001 [triangle]); Dey et al. (2004 [triangle]); Edison et al. (2004 [triangle]); Ramadevi et al. (2005 [triangle]); Suh et al. (1996 [triangle]); Tang (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1278-scheme1.jpg

Experimental

Crystal data

  • [Ni(C18H18N2O4)(H2O)]
  • M r = 403.07
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1278-efi1.jpg
  • a = 8.7698 (3) Å
  • b = 27.0608 (9) Å
  • c = 7.4731 (2) Å
  • V = 1773.5 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.13 mm−1
  • T = 298 K
  • 0.18 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.823, T max = 0.832
  • 9937 measured reflections
  • 1978 independent reflections
  • 1762 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.085
  • S = 1.04
  • 1978 reflections
  • 125 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039129/sj2661sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039129/sj2661Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Jiaying University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Dey et al., 2004; Angulo et al., 2001; Ramadevi et al., 2005; Edison et al., 2004). Recently, the author has reported a nickel(II) complex with a related Schiff base ligand (Tang, 2009). As a continuation of this work, the title mononuclear nickel(II) complex, Fig. 1, is reported here.

The molecule of the title complex possesses crystallographic mirror symmetry. The Ni atom in the complex is five-coordinated by two imine N and two phenolate O atoms of the Schiff base ligand, and by one water O atom, forming a square-pyramidal geometry.

In the crystal structure, the molecules are linked through intermolecular O—H···O hydrogen bonds (Table 1), forming chains along the a axis, as shown in Fig. 2.

Experimental

4-Methoxy-2-hydroxybenzaldehyde (0.2 mmol, 30.5 mg), ethane-1,2-diamine (0.1 mmol, 6.0 mg) and nickel(II) nitrate hexahydrate (0.1 mmol, 29.1 mg) were mixed in a methanol solution (20 ml). The mixture was stirred at room temperature for 30 min to give a green solution. The solution was allowed to stand in air for 5 days, yielding green block-shaped crystals of the title complex.

Refinement

Water H atoms were located from a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å. Other H atoms were constrained to ideal geometries, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing of the title complex, viewed along the c axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.

Crystal data

[Ni(C18H18N2O4)(H2O)]F(000) = 840
Mr = 403.07Dx = 1.510 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4326 reflections
a = 8.7698 (3) Åθ = 2.3–29.2°
b = 27.0608 (9) ŵ = 1.13 mm1
c = 7.4731 (2) ÅT = 298 K
V = 1773.5 (1) Å3Block, green
Z = 40.18 × 0.17 × 0.17 mm

Data collection

Bruker SMART CCD area detector diffractometer1978 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→11
Tmin = 0.823, Tmax = 0.832k = −34→32
9937 measured reflectionsl = −9→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0327P)2 + 1.6368P] where P = (Fo2 + 2Fc2)/3
1978 reflections(Δ/σ)max = 0.001
125 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.04557 (4)0.25001.04045 (5)0.03460 (13)
N10.1893 (2)0.29806 (9)0.9426 (3)0.0540 (5)
O1−0.10331 (18)0.30124 (6)1.0871 (2)0.0459 (4)
O2−0.3611 (2)0.45495 (6)1.0277 (2)0.0558 (5)
O30.1380 (3)0.25001.3276 (3)0.0467 (5)
C10.0251 (3)0.36946 (9)0.9443 (3)0.0425 (5)
C2−0.1014 (3)0.34714 (8)1.0324 (3)0.0379 (5)
C3−0.2323 (3)0.37628 (8)1.0615 (3)0.0412 (5)
H3A−0.31600.36251.11970.049*
C4−0.2387 (3)0.42474 (9)1.0054 (3)0.0440 (5)
C5−0.1154 (3)0.44666 (9)0.9178 (3)0.0535 (6)
H5−0.12040.47930.87910.064*
C60.0129 (3)0.41896 (9)0.8904 (3)0.0519 (6)
H60.09580.43360.83360.062*
C70.1637 (3)0.34352 (10)0.9075 (3)0.0501 (6)
H70.24180.36130.85320.060*
C80.3344 (3)0.27498 (13)0.8944 (7)0.1204 (18)
H8A0.36330.28630.77600.144*
H8B0.41190.28630.97740.144*
C9−0.4961 (3)0.43441 (10)1.1044 (4)0.0623 (7)
H9A−0.53060.40731.03210.093*
H9B−0.57400.45931.10960.093*
H9C−0.47430.42281.22310.093*
H30.194 (3)0.2744 (7)1.355 (4)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02532 (19)0.0415 (2)0.0369 (2)0.0000.00467 (15)0.000
N10.0328 (10)0.0682 (14)0.0611 (13)−0.0012 (9)0.0092 (9)0.0186 (11)
O10.0374 (8)0.0394 (8)0.0610 (10)−0.0007 (7)0.0115 (7)0.0110 (7)
O20.0664 (11)0.0380 (9)0.0631 (11)0.0067 (8)0.0063 (9)0.0083 (8)
O30.0341 (12)0.0514 (14)0.0545 (14)0.000−0.0101 (11)0.000
C10.0450 (12)0.0462 (12)0.0363 (11)−0.0125 (10)0.0011 (9)0.0016 (10)
C20.0390 (11)0.0389 (11)0.0360 (10)−0.0064 (9)−0.0016 (9)0.0025 (9)
C30.0421 (12)0.0373 (11)0.0443 (12)−0.0050 (9)0.0034 (10)0.0022 (9)
C40.0555 (14)0.0387 (12)0.0378 (11)−0.0029 (10)−0.0022 (10)0.0006 (9)
C50.0708 (17)0.0381 (12)0.0518 (14)−0.0100 (12)0.0048 (13)0.0077 (11)
C60.0578 (15)0.0502 (14)0.0478 (13)−0.0181 (12)0.0072 (12)0.0067 (11)
C70.0397 (12)0.0629 (16)0.0478 (13)−0.0120 (11)0.0051 (10)0.0133 (12)
C80.0448 (16)0.104 (3)0.212 (5)0.0225 (16)0.056 (2)0.079 (3)
C90.0617 (16)0.0539 (15)0.0713 (18)0.0134 (13)0.0116 (15)0.0120 (14)

Geometric parameters (Å, °)

Ni1—O1i1.9363 (16)C2—C31.410 (3)
Ni1—O11.9363 (16)C3—C41.378 (3)
Ni1—N1i1.953 (2)C3—H3A0.9300
Ni1—N11.953 (2)C4—C51.396 (3)
Ni1—O32.294 (2)C5—C61.367 (4)
N1—C71.278 (3)C5—H50.9300
N1—C81.463 (3)C6—H60.9300
O1—C21.308 (3)C7—H70.9300
O2—C41.359 (3)C8—C8i1.352 (7)
O2—C91.428 (3)C8—H8A0.9700
O3—H30.847 (10)C8—H8B0.9700
C1—C61.403 (3)C9—H9A0.9600
C1—C21.424 (3)C9—H9B0.9600
C1—C71.430 (3)C9—H9C0.9600
O1i—Ni1—O191.47 (9)O2—C4—C3124.6 (2)
O1i—Ni1—N1i91.48 (8)O2—C4—C5114.4 (2)
O1—Ni1—N1i168.38 (9)C3—C4—C5121.0 (2)
O1i—Ni1—N1168.38 (9)C6—C5—C4118.3 (2)
O1—Ni1—N191.48 (8)C6—C5—H5120.8
N1i—Ni1—N183.49 (13)C4—C5—H5120.8
O1i—Ni1—O394.00 (7)C5—C6—C1122.9 (2)
O1—Ni1—O394.00 (7)C5—C6—H6118.6
N1i—Ni1—O397.00 (8)C1—C6—H6118.6
N1—Ni1—O397.00 (8)N1—C7—C1125.6 (2)
C7—N1—C8120.9 (2)N1—C7—H7117.2
C7—N1—Ni1127.17 (17)C1—C7—H7117.2
C8—N1—Ni1111.69 (19)C8i—C8—N1115.27 (16)
C2—O1—Ni1127.95 (14)C8i—C8—H8A108.5
C4—O2—C9118.01 (19)N1—C8—H8A108.5
Ni1—O3—H3115 (2)C8i—C8—H8B108.5
C6—C1—C2118.6 (2)N1—C8—H8B108.5
C6—C1—C7118.6 (2)H8A—C8—H8B107.5
C2—C1—C7122.8 (2)O2—C9—H9A109.5
O1—C2—C3118.17 (19)O2—C9—H9B109.5
O1—C2—C1123.9 (2)H9A—C9—H9B109.5
C3—C2—C1117.9 (2)O2—C9—H9C109.5
C4—C3—C2121.2 (2)H9A—C9—H9C109.5
C4—C3—H3A119.4H9B—C9—H9C109.5
C2—C3—H3A119.4

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.85 (1)1.97 (2)2.734 (2)150 (3)

Symmetry codes: (ii) x+1/2, y, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2661).

References

  • Angulo, I. M., Bouwman, E., Lutz, M., Mul, W. P. & Spek, A. L. (2001). Inorg. Chem.40, 2073–2082. [PubMed]
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem.43, 2427–2434. [PubMed]
  • Edison, S. E., Krause Bauer, J. A. & Baldwin, M. J. (2004). Acta Cryst.E60, m1930-m1932.
  • Ramadevi, P., Kumaresan, S. & Muir, K. W. (2005). Acta Cryst. E61, m1749–m1751.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suh, M. P., Oh, K. Y., Lee, J. W. & Bae, Y. Y. (1996). J. Am. Chem. Soc.118, 777–783.
  • Tang, C. (2009). Acta Cryst. E65, m317. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography