PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1325.
Published online 2009 October 7. doi:  10.1107/S1600536809040136
PMCID: PMC2971104

Dimeth­yl(2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)zinc(II)

Abstract

The title compound, [Zn(CH3)2(C15H11N3)], was synthesized by the addition of dimethyl­zinc to 2,2′:6′,2′′-terpyridine and was crystallized by the slow evaporation of THF. The penta­coordinate ZnII atom, lying on a twofold rotation axis, displays a distorted trigonal-bipyramidal geometry, with two terminal N atoms at the axial positions and the central N atom and two methyl C atoms at the equatorial positions.

Related literature

For the crystal structures of terpyridine dichlorido­zinc(II) compounds, see: Corbridge & Cox (1956 [triangle]); Einstein & Penfold (1966 [triangle]); Vlasse et al. (1983 [triangle]). For examples of other substituted terpyridine zinc(II) compounds, see: Harrison et al. (1986 [triangle]); Hou et al. (2004 [triangle]). The structure of a bipyridine dimethyl­zinc(II) compound was reported by Wissing et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1325-scheme1.jpg

Experimental

Crystal data

  • [Zn(CH3)2(C15H11N3)]
  • M r = 328.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1325-efi1.jpg
  • a = 17.4250 (11) Å
  • b = 9.1083 (6) Å
  • c = 11.7595 (14) Å
  • β = 127.193 (1)°
  • V = 1486.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.65 mm−1
  • T = 125 K
  • 0.23 × 0.13 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.703, T max = 0.908
  • 9483 measured reflections
  • 1837 independent reflections
  • 1710 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.061
  • S = 1.09
  • 1837 reflections
  • 98 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040136/hy2233sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040136/hy2233Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

Comment

The chelating ligand 2,2':6',2''-terpyridine coordinates to a variety of first-row transition metal Lewis acids. Specifically, it can coordinate to disubstituted zinc compounds, allowing for the formation of trigonal bipyramidal zinc(II) complexes (Harrison et al., 1986). The structure of terpyridine dichlorozinc(II) has been reported a number of times with different results (Corbridge & Cox, 1956; Einstein & Penfold, 1966; Vlasse et al., 1983). In addition to substituents on the zinc(II) center, substituents on the terpyridine are also known (Hou et al., 2004). The structure presented here is the first known structure in a class of terpyridine zinc(II) compounds with two alkyl groups bound directly to the metal center.

The title compound (Fig. 1) was obtained by the reaction of dimethylzinc with 2,2':6',2''-terpyridine. It exhibits a distorted trigonal bipyramidal geometry about the metal center and has the two terminal N atoms in the axial positions, with a bond length of 2.3381 (12) Å (Table 1). The central N atom, coordinated to the zinc via the equatorial position, has a slightly smaller bond length, 2.2603 (16) Å, due to the size of the ligand, which is not able to wrap around the metal 180°. The N1—Zn—N1i bond angle is 140.52 (6)° [symmetry code: (i) -x, y, 1/2-z], illustrating the degree to which the compound is distorted from a perfectly trigonal bipyramid. The Zn—C bond length is 2.0282 (15) Å, and the C1—Zn—C1i bond angle is 133.21 (9)°: slightly greater than the expected 120° between equatorial atoms. Interestingly, the Zn—N bond lengths shown here are about 0.2 Å longer than those reported for similar terpyridine zinc(II) complexes, while the Zn—C length is expectedly shorter than the Zn—Cl and Zn—S lengths (Harrison et al., 1986; Hou et al., 2004; Vlasse et al., 1983). However, the Zn—C bond length is similar to that reported for a bipyridine dimethylzinc(II) complex, characterized by Wessing et al. (1994). The terpyridyl N1—Zn—N1i and N1—Zn—N2 bond angles are in agreement with those reported in the literature (Harrison et al., 1986; Hou et al., 2004; Vlasse et al., 1983).

Experimental

Under a nitrogen atmosphere, dimethylzinc (2 M in toluene, 1.07 ml, 2.14 mmol) was added to a stirring solution of terpyridine (0.511 g, 2.19 mmol) in toluene (3.5 ml). The resulting orange precipitate, which is extremely sensitive to hydrolysis, was filtered and dried in vacuo (yield 65%, 0.46 g). Crystallization was achieved by slow evaporation of THF in a nitrogen filled glovebox, which yielded yellow plates within five days. Analysis, calculated for C17H17N3Zn: C 62.11, H 5.21, N 12.78%; found: C 59.18, H 5.09, N 12.12%. 1H NMR (300 MHz, C6D6): δ -0.529 (s, 6H, –CH3).

Refinement

A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEXII CCD platform diffractometer. H atoms were included in calculated positions and were refined using a riding model, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level. [Symmetry code: (i) -x, y, 1/2-z.]

Crystal data

[Zn(CH3)2(C15H11N3)]F(000) = 680
Mr = 328.71Dx = 1.469 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6987 reflections
a = 17.4250 (11) Åθ = 2.7–28.3°
b = 9.1083 (6) ŵ = 1.65 mm1
c = 11.7595 (14) ÅT = 125 K
β = 127.193 (1)°Plate, yellow
V = 1486.8 (2) Å30.23 × 0.13 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer1837 independent reflections
Radiation source: fine-focus sealed tube1710 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.703, Tmax = 0.908k = −12→12
9483 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0347P)2 + 0.7204P] where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.00000.27994 (2)0.25000.02138 (9)
N10.09270 (8)0.19322 (13)0.18122 (12)0.0217 (2)
N20.00000.03178 (17)0.25000.0181 (3)
C10.11086 (11)0.36835 (17)0.43838 (16)0.0282 (3)
H1A0.12920.46250.42070.042*
H1B0.16600.30130.48580.042*
H1C0.09090.38400.49960.042*
C20.13813 (11)0.28148 (17)0.14866 (16)0.0260 (3)
H2A0.13370.38460.15570.031*
C30.19141 (11)0.22995 (19)0.10513 (17)0.0291 (3)
H3A0.22370.29590.08450.035*
C40.19631 (10)0.0801 (2)0.09259 (16)0.0298 (3)
H4A0.23170.04130.06210.036*
C50.14921 (10)−0.01296 (17)0.12488 (15)0.0261 (3)
H5A0.1513−0.11630.11600.031*
C60.09862 (9)0.04762 (15)0.17079 (13)0.0197 (3)
C70.04737 (9)−0.04323 (15)0.21108 (13)0.0188 (3)
C80.04827 (10)−0.19665 (15)0.20904 (15)0.0239 (3)
H8A0.0814−0.24750.18010.029*
C90.0000−0.2732 (2)0.25000.0260 (4)
H9A0.0000−0.37750.25000.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.02557 (13)0.01758 (13)0.02424 (13)0.0000.01676 (11)0.000
N10.0219 (5)0.0236 (6)0.0222 (6)−0.0008 (4)0.0147 (5)−0.0004 (4)
N20.0182 (7)0.0178 (7)0.0176 (7)0.0000.0105 (6)0.000
C10.0330 (7)0.0234 (7)0.0303 (7)−0.0055 (6)0.0202 (7)−0.0032 (6)
C20.0259 (7)0.0279 (7)0.0261 (7)−0.0032 (6)0.0167 (6)0.0009 (6)
C30.0230 (7)0.0420 (9)0.0243 (7)−0.0018 (6)0.0154 (6)0.0048 (6)
C40.0236 (7)0.0461 (9)0.0247 (7)0.0082 (6)0.0173 (6)0.0050 (6)
C50.0252 (7)0.0299 (8)0.0253 (7)0.0066 (6)0.0164 (6)0.0020 (6)
C60.0172 (6)0.0242 (7)0.0161 (6)0.0021 (5)0.0093 (5)0.0006 (5)
C70.0177 (6)0.0195 (6)0.0167 (6)0.0016 (5)0.0091 (5)−0.0005 (5)
C80.0230 (7)0.0208 (7)0.0237 (7)0.0031 (5)0.0119 (6)−0.0023 (5)
C90.0262 (10)0.0171 (9)0.0276 (10)0.0000.0126 (9)0.000

Geometric parameters (Å, °)

Zn—C1i2.0282 (15)C2—H2A0.9500
Zn—C12.0282 (15)C3—C41.381 (2)
Zn—N12.3381 (12)C3—H3A0.9500
Zn—N22.2603 (16)C4—C51.383 (2)
Zn—N1i2.3382 (12)C4—H4A0.9500
N1—C21.3364 (19)C5—C61.3958 (18)
N1—C61.3416 (18)C5—H5A0.9500
N2—C7i1.3470 (15)C6—C71.4893 (18)
N2—C71.3470 (15)C7—C81.3979 (19)
C1—H1A0.9800C8—C91.3838 (18)
C1—H1B0.9800C8—H8A0.9500
C1—H1C0.9800C9—C8i1.3838 (18)
C2—C31.385 (2)C9—H9A0.9500
C1i—Zn—C1133.21 (9)N1—C2—H2A118.4
C1i—Zn—N2113.39 (5)C3—C2—H2A118.4
C1—Zn—N2113.39 (5)C4—C3—C2118.22 (14)
C1i—Zn—N199.05 (5)C4—C3—H3A120.9
C1—Zn—N196.37 (5)C2—C3—H3A120.9
N2—Zn—N170.26 (3)C3—C4—C5119.41 (14)
C1i—Zn—N1i96.37 (5)C3—C4—H4A120.3
C1—Zn—N1i99.05 (5)C5—C4—H4A120.3
N2—Zn—N1i70.26 (3)C4—C5—C6118.83 (14)
N1—Zn—N1i140.52 (6)C4—C5—H5A120.6
C2—N1—C6118.48 (12)C6—C5—H5A120.6
C2—N1—Zn123.28 (10)N1—C6—C5121.84 (13)
C6—N1—Zn118.22 (9)N1—C6—C7115.22 (11)
C7i—N2—C7119.05 (16)C5—C6—C7122.93 (13)
C7i—N2—Zn120.48 (8)N2—C7—C8121.89 (13)
C7—N2—Zn120.47 (8)N2—C7—C6115.77 (12)
Zn—C1—H1A109.5C8—C7—C6122.34 (12)
Zn—C1—H1B109.5C9—C8—C7118.82 (14)
H1A—C1—H1B109.5C9—C8—H8A120.6
Zn—C1—H1C109.5C7—C8—H8A120.6
H1A—C1—H1C109.5C8—C9—C8i119.53 (19)
H1B—C1—H1C109.5C8—C9—H9A120.2
N1—C2—C3123.19 (14)C8i—C9—H9A120.2
C1i—Zn—N1—C268.69 (12)C2—C3—C4—C5−0.6 (2)
C1—Zn—N1—C2−66.99 (12)C3—C4—C5—C6−0.6 (2)
N2—Zn—N1—C2−179.60 (12)C2—N1—C6—C5−1.1 (2)
N1i—Zn—N1—C2−179.60 (12)Zn—N1—C6—C5177.37 (10)
C1i—Zn—N1—C6−109.70 (11)C2—N1—C6—C7179.08 (12)
C1—Zn—N1—C6114.62 (11)Zn—N1—C6—C7−2.45 (15)
N2—Zn—N1—C62.01 (9)C4—C5—C6—N11.5 (2)
N1i—Zn—N1—C62.01 (9)C4—C5—C6—C7−178.65 (12)
C1i—Zn—N2—C7i−89.74 (8)C7i—N2—C7—C80.42 (9)
C1—Zn—N2—C7i90.26 (8)Zn—N2—C7—C8−179.58 (9)
N1—Zn—N2—C7i178.72 (7)C7i—N2—C7—C6−179.48 (12)
N1i—Zn—N2—C7i−1.28 (7)Zn—N2—C7—C60.52 (12)
C1i—Zn—N2—C790.26 (8)N1—C6—C7—N21.31 (16)
C1—Zn—N2—C7−89.74 (8)C5—C6—C7—N2−178.51 (11)
N1—Zn—N2—C7−1.28 (7)N1—C6—C7—C8−178.59 (13)
N1i—Zn—N2—C7178.72 (7)C5—C6—C7—C81.6 (2)
C6—N1—C2—C3−0.3 (2)N2—C7—C8—C9−0.83 (19)
Zn—N1—C2—C3−178.64 (11)C6—C7—C8—C9179.07 (10)
N1—C2—C3—C41.1 (2)C7—C8—C9—C8i0.39 (9)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2233).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Corbridge, D. E. C. & Cox, E. G. (1956). J. Chem. Soc. pp. 594–603.
  • Einstein, F. W. B. & Penfold, B. R. (1966). Acta Cryst.20, 924–926.
  • Harrison, P. G., Begley, M. J., Kikabhai, T. & Killer, F. (1986). J. Chem. Soc. Dalton Trans. pp. 929–938.
  • Hou, L., Li, D. & Ng, S. W. (2004). Acta Cryst. E60, m1734–m1735.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vlasse, M., Rojo, T. & Beltran-Porter, D. (1983). Acta Cryst. C39, 560–563.
  • Wissing, E., Kaupp, M., Boersma, J., Spek, A. L. & van Koten, G. (1994). Organometallics, 13, 2349–2356.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography