PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2945.
Published online 2009 October 31. doi:  10.1107/S1600536809044754
PMCID: PMC2971101

N-(2,4,6-Trimethyl­phen­yl)maleamic acid

Abstract

The mol­ecular structure of the title compound, C13H15NO3, is stabilized by a short intra­molecular O—H(...)O hydrogen bond within the maleamic unit. In the crystal, inter­molecular N—H(...)O hydrogen bonds link mol­ecules into zigzag chains propagating in [010].

Related literature

For our sudies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009 [triangle]); Gowda, Tokarčík et al. (2009a [triangle],b [triangle]); Lo & Ng (2009 [triangle]). For hydrogen bonds in carboxylic acids, see: Leiserowitz (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2945-scheme1.jpg

Experimental

Crystal data

  • C13H15NO3
  • M r = 233.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2945-efi4.jpg
  • a = 10.8789 (3) Å
  • b = 11.9095 (2) Å
  • c = 20.1004 (5) Å
  • β = 103.014 (2)°
  • V = 2537.36 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 K
  • 0.56 × 0.48 × 0.35 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: analytical (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.933, T max = 0.965
  • 26868 measured reflections
  • 2386 independent reflections
  • 2029 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.04
  • 2386 reflections
  • 159 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044754/bt5119sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044754/bt5119Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and side chain substitutions on the crystal structures of amide derivatives (Gowda, Foro et al., 2009; Gowda, Tokarčík et al., 2009a,b), the crystal structure of N-(2,4,6-trimethylphenyl)-maleamic acid (I) has been determined. The conformations of the N–H and C=O bonds in the amide segment of the structure are anti to each other. Further, the conformation of the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). The rare anti conformation of the C=O and O–H bonds of the acid group has been observed, similar to that obsrved in N-(2,6-dimethylphenyl)-maleamic acid (Gowda, Tokarčík et al., 2009a) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O–H bonds of the acid group in N-(2,4,6-trimethylphenyl)succinamic acid (Gowda, Foro et al., 2009). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

The maleamic moiety includes a short intramolecular hydrogen O–H···O bond (Table 1). The C2–C3 bond length of 1.325 (2) Å clearly indicates the double bond character. The dihedral angle between the phenyl ring and the amido group –NHCO– is 58.3 (2)°. The mean plane through all the atoms of the maleamic moiety (N1, C1, C2, C3, C4, O1, O2 and O3) has a r.m.s. value of 0.06 Å, with the most deviating atom N1. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into zigzag ribbons propagated in the [0 1 0] direction (Fig. 2).

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2,4,6-trimethylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4,6-trimethylaniline. The resultant solid N-(2,4,6-trimethylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

All H atoms were placed in calculated positions (C–H = 0.93 or 0.96 Å, N–H = 0.86 Å, O–H = 0.90 Å) and refined using a riding model. The Uiso(H) values were set at 1.2Ueq(Caromatic, N, O) or 1.5Ueq(Cmethyl). The C12 methyl group exhibits orientational disorder of the hydrogen atoms. Two sets of H atoms were refined with occupancies of 0.56 (3) and 0.44 (3).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of crystal structure of (I) with two-dimensional framework generated by N—H···O hydrogen bonds, shown as dashed lines. Symmetry code (i): -x + 1/2, y + 1/2, -z + 1/2.

Crystal data

C13H15NO3F(000) = 992
Mr = 233.26Dx = 1.221 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 17006 reflections
a = 10.8789 (3) Åθ = 1.9–29.4°
b = 11.9095 (2) ŵ = 0.09 mm1
c = 20.1004 (5) ÅT = 295 K
β = 103.014 (2)°Block, colourless
V = 2537.36 (10) Å30.56 × 0.48 × 0.35 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer2386 independent reflections
graphite2029 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.023
ω scansθmax = 25.6°, θmin = 2.1°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)h = −13→13
Tmin = 0.933, Tmax = 0.965k = −14→14
26868 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102w = 1/[σ2(Fo2) + (0.0469P)2 + 1.3266P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2386 reflectionsΔρmax = 0.17 e Å3
159 parametersΔρmin = −0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0142 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.35967 (13)0.14861 (11)0.17051 (7)0.0419 (3)
C20.28501 (17)0.17469 (12)0.22158 (8)0.0576 (4)
H20.25470.24780.22060.069*
C30.25517 (19)0.10848 (13)0.26854 (8)0.0634 (5)
H30.21080.14450.29680.076*
C40.27916 (15)−0.01212 (12)0.28450 (7)0.0486 (4)
C50.42558 (11)0.23129 (11)0.07158 (6)0.0379 (3)
C60.51419 (13)0.31543 (12)0.06931 (7)0.0456 (3)
C70.56646 (14)0.31987 (13)0.01267 (8)0.0542 (4)
H70.62480.3760.01040.065*
C80.53555 (14)0.24425 (13)−0.04058 (8)0.0523 (4)
C90.44899 (14)0.16118 (12)−0.03596 (7)0.0490 (4)
H90.42880.1084−0.07080.059*
C100.39115 (12)0.15365 (11)0.01878 (7)0.0402 (3)
C110.55135 (18)0.39999 (15)0.12605 (9)0.0693 (5)
H11A0.62180.44320.1190.104*
H11B0.57440.36150.1690.104*
H11C0.48150.44910.12630.104*
C120.5918 (2)0.25320 (19)−0.10259 (10)0.0801 (6)
H12A0.56060.1931−0.13360.12*0.56 (3)
H12B0.68210.2483−0.08870.12*0.56 (3)
H12C0.56860.3239−0.12480.12*0.56 (3)
H12D0.64690.3171−0.09780.12*0.44 (3)
H12E0.52550.2619−0.14280.12*0.44 (3)
H12F0.63890.1863−0.10660.12*0.44 (3)
C130.29160 (14)0.06565 (12)0.01791 (8)0.0519 (4)
H13A0.26150.0387−0.02790.078*
H13B0.22270.09770.0340.078*
H13C0.3270.00440.0470.078*
N10.36385 (11)0.23264 (9)0.12731 (6)0.0424 (3)
H1N0.32570.29370.13350.051*
O10.41359 (10)0.05741 (8)0.16796 (5)0.0508 (3)
O20.34725 (10)−0.07126 (8)0.25195 (5)0.0521 (3)
H2A0.3763−0.02670.22270.062*
O30.23146 (13)−0.05442 (9)0.32755 (6)0.0693 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0520 (8)0.0339 (7)0.0424 (7)0.0010 (6)0.0165 (6)0.0039 (5)
C20.0900 (12)0.0343 (7)0.0601 (9)0.0118 (7)0.0415 (9)0.0074 (6)
C30.1035 (13)0.0422 (8)0.0594 (10)0.0066 (8)0.0497 (10)0.0029 (7)
C40.0692 (9)0.0397 (7)0.0379 (7)−0.0098 (7)0.0143 (7)0.0026 (6)
C50.0387 (7)0.0361 (7)0.0401 (7)−0.0004 (5)0.0114 (5)0.0075 (5)
C60.0452 (8)0.0414 (7)0.0498 (8)−0.0081 (6)0.0098 (6)0.0039 (6)
C70.0474 (8)0.0531 (9)0.0658 (10)−0.0150 (7)0.0209 (7)0.0091 (7)
C80.0515 (8)0.0575 (9)0.0531 (9)−0.0009 (7)0.0225 (7)0.0095 (7)
C90.0556 (9)0.0491 (8)0.0440 (8)−0.0036 (7)0.0149 (6)−0.0009 (6)
C100.0402 (7)0.0364 (7)0.0441 (7)−0.0030 (5)0.0099 (6)0.0052 (5)
C110.0781 (12)0.0590 (10)0.0706 (11)−0.0267 (9)0.0163 (9)−0.0111 (8)
C120.0877 (13)0.0929 (15)0.0740 (12)−0.0034 (11)0.0480 (11)0.0131 (10)
C130.0547 (9)0.0453 (8)0.0546 (9)−0.0148 (7)0.0101 (7)0.0023 (6)
N10.0534 (7)0.0323 (6)0.0459 (6)0.0032 (5)0.0204 (5)0.0065 (5)
O10.0653 (6)0.0409 (5)0.0518 (6)0.0141 (5)0.0252 (5)0.0110 (4)
O20.0692 (7)0.0352 (5)0.0546 (6)−0.0021 (5)0.0197 (5)0.0072 (4)
O30.1074 (10)0.0511 (7)0.0589 (7)−0.0122 (6)0.0390 (7)0.0112 (5)

Geometric parameters (Å, °)

C1—O11.2409 (16)C9—C101.3880 (19)
C1—N11.3325 (16)C9—H90.93
C1—C21.4784 (19)C10—C131.5044 (18)
C2—C31.325 (2)C11—H11A0.96
C2—H20.93C11—H11B0.96
C3—C41.482 (2)C11—H11C0.96
C3—H30.93C12—H12A0.96
C4—O31.2140 (17)C12—H12B0.96
C4—O21.3004 (18)C12—H12C0.96
C5—C101.3937 (19)C12—H12D0.96
C5—C61.3983 (18)C12—H12E0.96
C5—N11.4300 (16)C12—H12F0.96
C6—C71.383 (2)C13—H13A0.96
C6—C111.507 (2)C13—H13B0.96
C7—C81.381 (2)C13—H13C0.96
C7—H70.93N1—H1N0.86
C8—C91.383 (2)O2—H2A0.9
C8—C121.511 (2)
O1—C1—N1123.00 (12)C9—C10—C13119.30 (13)
O1—C1—C2123.46 (12)C5—C10—C13122.71 (12)
N1—C1—C2113.55 (12)C6—C11—H11A109.5
C3—C2—C1129.10 (14)C6—C11—H11B109.5
C3—C2—H2115.5H11A—C11—H11B109.5
C1—C2—H2115.5C6—C11—H11C109.5
C2—C3—C4132.18 (14)H11A—C11—H11C109.5
C2—C3—H3113.9H11B—C11—H11C109.5
C4—C3—H3113.9C8—C12—H12A109.5
O3—C4—O2121.14 (14)C8—C12—H12B109.5
O3—C4—C3118.28 (14)C8—C12—H12C109.5
O2—C4—C3120.56 (12)C8—C12—H12D109.5
C10—C5—C6121.31 (12)C8—C12—H12E109.5
C10—C5—N1120.72 (11)H12D—C12—H12E109.5
C6—C5—N1117.79 (12)C8—C12—H12F109.5
C7—C6—C5117.93 (13)H12D—C12—H12F109.5
C7—C6—C11120.49 (13)H12E—C12—H12F109.5
C5—C6—C11121.58 (13)C10—C13—H13A109.5
C8—C7—C6122.64 (13)C10—C13—H13B109.5
C8—C7—H7118.7H13A—C13—H13B109.5
C6—C7—H7118.7C10—C13—H13C109.5
C7—C8—C9117.71 (13)H13A—C13—H13C109.5
C7—C8—C12121.33 (15)H13B—C13—H13C109.5
C9—C8—C12120.95 (15)C1—N1—C5126.37 (11)
C8—C9—C10122.43 (14)C1—N1—H1N116.8
C8—C9—H9118.8C5—N1—H1N116.8
C10—C9—H9118.8C4—O2—H2A109.5
C9—C10—C5117.95 (12)
O1—C1—C2—C3−4.9 (3)C7—C8—C9—C101.6 (2)
N1—C1—C2—C3175.19 (19)C12—C8—C9—C10−176.99 (15)
C1—C2—C3—C4−3.2 (4)C8—C9—C10—C5−2.0 (2)
C2—C3—C4—O3−174.0 (2)C8—C9—C10—C13175.94 (14)
C2—C3—C4—O24.5 (3)C6—C5—C10—C90.9 (2)
C10—C5—C6—C70.4 (2)N1—C5—C10—C9176.00 (12)
N1—C5—C6—C7−174.81 (12)C6—C5—C10—C13−176.92 (13)
C10—C5—C6—C11179.69 (14)N1—C5—C10—C13−1.86 (19)
N1—C5—C6—C114.5 (2)O1—C1—N1—C51.9 (2)
C5—C6—C7—C8−0.8 (2)C2—C1—N1—C5−178.23 (13)
C11—C6—C7—C8179.93 (16)C10—C5—N1—C159.84 (18)
C6—C7—C8—C9−0.2 (2)C6—C5—N1—C1−124.94 (15)
C6—C7—C8—C12178.41 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.901.612.5037 (13)174
N1—H1N···O3i0.862.122.9587 (15)165

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5119).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o2056. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874. [PMC free article] [PubMed]
  • Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography