PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2631.
Published online 2009 October 3. doi:  10.1107/S1600536809038628
PMCID: PMC2971099

(E)-3-(9-Anthr­yl)-1-(4-chloro­phen­yl)-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

Abstract

In the title compound, C25H16ClN3O, the anthryl and chloro­phenyl substituents are on opposite sides of the triazole ring. The anthryl and benzene mean planes are aligned at 83.35 (2) and 89.09 (2)°, respectively, with respect to the triazole ring.

Related literature

For general background to the biological properties of chalcones, see: Corréa et al. (2001 [triangle]). For the synthesis, see: Erhardt et al. (1985 [triangle]); Kranz et al. (1980 [triangle]). For similar crystal structures, see: Lu et al. (2009 [triangle]); Wang et al. (2009 [triangle]); Yan et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2631-scheme1.jpg

Experimental

Crystal data

  • C25H16ClN3O
  • M r = 409.86
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2631-efi1.jpg
  • a = 13.1464 (11) Å
  • b = 13.5485 (12) Å
  • c = 22.0974 (19) Å
  • V = 3935.9 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 298 K
  • 0.26 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.946, T max = 0.979
  • 19759 measured reflections
  • 3859 independent reflections
  • 3430 reflections with I > 2σ(I)
  • R int = 0.119

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.162
  • S = 1.12
  • 3859 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038628/ng2650sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038628/ng2650Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

supplementary crystallographic information

Comment

Chalcone derivatives possess wide biological properties such as antimicrobial, antifungal, antileishmanial, antibacterial, antimalarial, analgesic, anti-inflammatory and chemopreventive activities (Corréa et al., 2001). Recently chalcone-containing derivatives received special attention. Our interest is the research and development of azole-derived chalcones as medicinal agents. We found that all the synthesized imidazole-derived chalcone compounds exhibited significant antimicrobial and anticancer activities, and have reported several crystal structues of nitroimidazole-containing chalcones (Lu et al., 2009; Wang et al., 2009b) and a triazole-derived phenyl compound(Yan et al., 2009c). In our ongoing research, here we would like to report the crystal structure of the first both triazole and anthracence derived chalcone.

In the crystal structure (Fig. 1), the title compound is non-planar, display a ' Y ' shape, with the anthryl ring and phenyl moiety on opposite sides of the triazole ring, the anthracene and benzene mean planes make dihedral angles of 83.35 (2) and 89.09 (2)°, respectively, with the plane of the triazole ring. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

Experimental

Compound (I) was synthesized according to the procedure of Erhardt et al. (1985); Kranz et al., (1980). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of chloroform and acetone by slow evaporationat room temperature.

Refinement

All the hydrogen atoms were placed at their geometrical positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure of (I), showing the formation of the three-dimensional network.

Crystal data

C25H16ClN3OF(000) = 1696
Mr = 409.86Dx = 1.383 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6265 reflections
a = 13.1464 (11) Åθ = 2.4–27.5°
b = 13.5485 (12) ŵ = 0.22 mm1
c = 22.0974 (19) ÅT = 298 K
V = 3935.9 (6) Å3Block, yellow
Z = 80.26 × 0.12 × 0.10 mm

Data collection

Bruker SMART diffractometer3859 independent reflections
Radiation source: fine-focus sealed tube3430 reflections with I > 2σ(I)
graphiteRint = 0.119
[var phi] and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.946, Tmax = 0.979k = −16→16
19759 measured reflectionsl = −17→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0638P)2 + 1.7945P] where P = (Fo2 + 2Fc2)/3
3859 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.30643 (17)1.1607 (2)0.39287 (11)0.0426 (6)
C20.27174 (18)1.0658 (2)0.40129 (11)0.0447 (6)
H20.23931.04810.43710.054*
C30.28585 (17)0.99743 (18)0.35589 (11)0.0391 (5)
H30.26070.93370.36040.047*
C40.33774 (15)1.02351 (17)0.30331 (9)0.0330 (5)
C50.37216 (18)1.11961 (18)0.29626 (11)0.0421 (6)
H50.40681.13730.26120.051*
C60.35564 (19)1.18896 (19)0.34055 (12)0.0474 (6)
H60.37721.25380.33530.057*
C70.35073 (16)0.95057 (16)0.25405 (10)0.0346 (5)
C80.45084 (15)0.95049 (15)0.22047 (9)0.0303 (5)
C90.3687 (2)0.9653 (2)0.11838 (12)0.0535 (7)
H90.30440.98630.13040.064*
C100.4936 (2)0.9244 (2)0.06792 (11)0.0484 (6)
H100.53450.91050.03470.058*
C110.54031 (16)0.94857 (17)0.24822 (9)0.0340 (5)
H110.59850.94970.22430.041*
C120.55381 (15)0.94475 (17)0.31479 (9)0.0327 (5)
C130.52315 (15)0.86077 (17)0.34745 (9)0.0332 (5)
C140.48195 (18)0.77419 (18)0.32006 (11)0.0406 (5)
H140.47330.77240.27830.049*
C150.4552 (2)0.6945 (2)0.35349 (13)0.0506 (6)
H150.42920.63890.33430.061*
C160.4662 (2)0.6944 (2)0.41698 (12)0.0517 (7)
H160.44700.63930.43940.062*
C170.5045 (2)0.7742 (2)0.44502 (11)0.0464 (6)
H170.51100.77350.48690.056*
C180.53536 (16)0.85998 (18)0.41238 (10)0.0376 (5)
C190.57685 (18)0.94139 (19)0.44096 (10)0.0423 (6)
H190.58260.94110.48290.051*
C200.61025 (17)1.02352 (18)0.40905 (10)0.0386 (5)
C210.6548 (2)1.1069 (2)0.43795 (12)0.0534 (7)
H210.66031.10750.47990.064*
C220.6890 (3)1.1848 (2)0.40624 (14)0.0653 (8)
H220.71771.23830.42630.078*
C230.6813 (2)1.1853 (2)0.34226 (13)0.0590 (7)
H230.70651.23860.32040.071*
C240.63764 (19)1.10861 (19)0.31269 (11)0.0450 (6)
H240.63211.11080.27080.054*
C250.60008 (16)1.02502 (17)0.34426 (9)0.0345 (5)
Cl10.28705 (6)1.24841 (6)0.44918 (4)0.0647 (3)
N40.39691 (19)0.95338 (19)0.06181 (9)0.0571 (6)
N50.52736 (15)0.91671 (17)0.12348 (9)0.0449 (5)
N60.44473 (13)0.94308 (14)0.15650 (8)0.0334 (4)
O10.28455 (12)0.89224 (14)0.24077 (9)0.0505 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0445 (12)0.0499 (15)0.0335 (12)0.0064 (11)0.0001 (9)−0.0160 (11)
C20.0506 (14)0.0532 (16)0.0303 (12)0.0020 (11)0.0086 (10)−0.0021 (11)
C30.0449 (12)0.0371 (13)0.0354 (12)−0.0013 (10)0.0042 (9)0.0017 (10)
C40.0348 (11)0.0350 (12)0.0293 (11)0.0028 (9)0.0000 (8)−0.0028 (9)
C50.0513 (13)0.0387 (13)0.0364 (13)−0.0036 (10)0.0105 (10)−0.0026 (10)
C60.0573 (15)0.0347 (13)0.0503 (15)−0.0030 (11)0.0081 (11)−0.0093 (11)
C70.0378 (11)0.0346 (12)0.0313 (11)0.0009 (9)−0.0031 (8)−0.0021 (9)
C80.0418 (11)0.0280 (11)0.0211 (10)0.0010 (8)0.0003 (8)−0.0030 (8)
C90.0489 (14)0.078 (2)0.0332 (13)0.0122 (13)−0.0078 (10)−0.0027 (13)
C100.0687 (16)0.0541 (16)0.0225 (11)0.0060 (13)0.0009 (11)−0.0051 (11)
C110.0397 (11)0.0380 (12)0.0244 (11)0.0011 (9)0.0025 (8)−0.0015 (9)
C120.0365 (11)0.0386 (12)0.0230 (11)0.0049 (9)−0.0012 (8)−0.0014 (9)
C130.0358 (11)0.0377 (12)0.0260 (11)0.0070 (9)0.0000 (8)−0.0019 (9)
C140.0520 (13)0.0389 (13)0.0309 (12)0.0042 (10)−0.0024 (10)−0.0025 (10)
C150.0654 (16)0.0412 (15)0.0454 (15)−0.0044 (12)−0.0060 (12)0.0003 (12)
C160.0632 (16)0.0476 (16)0.0444 (15)−0.0039 (12)−0.0039 (12)0.0151 (12)
C170.0566 (15)0.0524 (16)0.0303 (12)0.0013 (12)−0.0055 (10)0.0108 (11)
C180.0423 (12)0.0432 (13)0.0272 (11)0.0060 (10)−0.0009 (9)0.0012 (10)
C190.0568 (14)0.0494 (15)0.0208 (11)0.0048 (11)−0.0032 (9)−0.0036 (10)
C200.0487 (13)0.0406 (13)0.0264 (11)0.0074 (10)−0.0045 (9)−0.0051 (10)
C210.0813 (19)0.0464 (15)0.0324 (13)−0.0027 (13)−0.0121 (12)−0.0104 (11)
C220.102 (2)0.0429 (16)0.0509 (17)−0.0114 (15)−0.0188 (16)−0.0087 (13)
C230.087 (2)0.0419 (15)0.0486 (16)−0.0120 (14)−0.0113 (14)0.0063 (12)
C240.0604 (15)0.0420 (14)0.0325 (12)−0.0027 (11)−0.0076 (10)0.0040 (10)
C250.0397 (11)0.0376 (12)0.0261 (11)0.0057 (9)−0.0041 (8)−0.0021 (9)
Cl10.0712 (5)0.0703 (5)0.0526 (5)0.0044 (4)0.0062 (3)−0.0339 (4)
N40.0731 (15)0.0724 (17)0.0258 (11)0.0103 (13)−0.0114 (10)−0.0013 (10)
N50.0533 (11)0.0574 (13)0.0240 (10)0.0118 (10)0.0013 (8)−0.0069 (9)
N60.0422 (10)0.0347 (10)0.0234 (9)0.0036 (8)−0.0032 (7)−0.0042 (7)
O10.0446 (9)0.0519 (11)0.0550 (11)−0.0086 (8)0.0035 (8)−0.0199 (9)

Geometric parameters (Å, °)

C1—C21.377 (4)C12—C131.406 (3)
C1—C61.379 (4)C13—C141.427 (3)
C1—Cl11.740 (2)C13—C181.444 (3)
C2—C31.378 (3)C14—C151.355 (4)
C2—H20.9300C14—H140.9300
C3—C41.393 (3)C15—C161.411 (4)
C3—H30.9300C15—H150.9300
C4—C51.387 (3)C16—C171.344 (4)
C4—C71.480 (3)C16—H160.9300
C5—C61.374 (3)C17—C181.427 (4)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.383 (3)
C7—O11.211 (3)C19—C201.388 (4)
C7—C81.511 (3)C19—H190.9300
C8—C111.327 (3)C20—C211.424 (3)
C8—N61.419 (3)C20—C251.438 (3)
C9—N41.314 (3)C21—C221.344 (4)
C9—N61.342 (3)C21—H210.9300
C9—H90.9300C22—C231.417 (4)
C10—N51.310 (3)C22—H220.9300
C10—N41.337 (4)C23—C241.355 (4)
C10—H100.9300C23—H230.9300
C11—C121.483 (3)C24—C251.419 (3)
C11—H110.9300C24—H240.9300
C12—C251.406 (3)N5—N61.356 (3)
C2—C1—C6121.9 (2)C15—C14—H14119.2
C2—C1—Cl1119.53 (19)C13—C14—H14119.2
C6—C1—Cl1118.6 (2)C14—C15—C16121.1 (2)
C1—C2—C3119.0 (2)C14—C15—H15119.5
C1—C2—H2120.5C16—C15—H15119.5
C3—C2—H2120.5C17—C16—C15119.8 (2)
C2—C3—C4120.2 (2)C17—C16—H16120.1
C2—C3—H3119.9C15—C16—H16120.1
C4—C3—H3119.9C16—C17—C18121.9 (2)
C5—C4—C3119.4 (2)C16—C17—H17119.0
C5—C4—C7120.4 (2)C18—C17—H17119.0
C3—C4—C7120.0 (2)C19—C18—C17122.1 (2)
C6—C5—C4120.7 (2)C19—C18—C13119.5 (2)
C6—C5—H5119.7C17—C18—C13118.5 (2)
C4—C5—H5119.7C18—C19—C20122.1 (2)
C5—C6—C1118.8 (2)C18—C19—H19118.9
C5—C6—H6120.6C20—C19—H19118.9
C1—C6—H6120.6C19—C20—C21122.6 (2)
O1—C7—C4122.1 (2)C19—C20—C25119.2 (2)
O1—C7—C8120.4 (2)C21—C20—C25118.3 (2)
C4—C7—C8117.53 (18)C22—C21—C20121.8 (2)
C11—C8—N6120.60 (18)C22—C21—H21119.1
C11—C8—C7123.04 (19)C20—C21—H21119.1
N6—C8—C7116.10 (17)C21—C22—C23120.0 (3)
N4—C9—N6111.1 (2)C21—C22—H22120.0
N4—C9—H9124.5C23—C22—H22120.0
N6—C9—H9124.5C24—C23—C22120.5 (3)
N5—C10—N4116.1 (2)C24—C23—H23119.8
N5—C10—H10121.9C22—C23—H23119.8
N4—C10—H10121.9C23—C24—C25121.5 (2)
C8—C11—C12124.43 (19)C23—C24—H24119.3
C8—C11—H11117.8C25—C24—H24119.3
C12—C11—H11117.8C12—C25—C24122.7 (2)
C25—C12—C13120.81 (19)C12—C25—C20119.4 (2)
C25—C12—C11119.0 (2)C24—C25—C20117.9 (2)
C13—C12—C11120.2 (2)C9—N4—C10102.0 (2)
C12—C13—C14123.8 (2)C10—N5—N6102.22 (19)
C12—C13—C18118.9 (2)C9—N6—N5108.56 (19)
C14—C13—C18117.2 (2)C9—N6—C8130.66 (19)
C15—C14—C13121.5 (2)N5—N6—C8120.59 (17)
C6—C1—C2—C3−0.6 (4)C14—C13—C18—C19178.7 (2)
Cl1—C1—C2—C3178.79 (19)C12—C13—C18—C17−179.7 (2)
C1—C2—C3—C42.3 (4)C14—C13—C18—C17−0.9 (3)
C2—C3—C4—C5−2.0 (3)C17—C18—C19—C20177.7 (2)
C2—C3—C4—C7−178.6 (2)C13—C18—C19—C20−1.9 (3)
C3—C4—C5—C60.1 (4)C18—C19—C20—C21−178.8 (2)
C7—C4—C5—C6176.6 (2)C18—C19—C20—C251.0 (3)
C4—C5—C6—C11.6 (4)C19—C20—C21—C22178.3 (3)
C2—C1—C6—C5−1.4 (4)C25—C20—C21—C22−1.5 (4)
Cl1—C1—C6—C5179.2 (2)C20—C21—C22—C23−0.1 (5)
C5—C4—C7—O1−138.9 (2)C21—C22—C23—C241.5 (5)
C3—C4—C7—O137.7 (3)C22—C23—C24—C25−1.2 (5)
C5—C4—C7—C841.5 (3)C13—C12—C25—C24176.2 (2)
C3—C4—C7—C8−142.0 (2)C11—C12—C25—C24−2.1 (3)
O1—C7—C8—C11−129.5 (2)C13—C12—C25—C20−3.9 (3)
C4—C7—C8—C1150.1 (3)C11—C12—C25—C20177.82 (19)
O1—C7—C8—N644.7 (3)C23—C24—C25—C12179.6 (2)
C4—C7—C8—N6−135.7 (2)C23—C24—C25—C20−0.4 (4)
N6—C8—C11—C12−173.0 (2)C19—C20—C25—C121.9 (3)
C7—C8—C11—C121.0 (4)C21—C20—C25—C12−178.2 (2)
C8—C11—C12—C25−115.3 (3)C19—C20—C25—C24−178.1 (2)
C8—C11—C12—C1366.4 (3)C21—C20—C25—C241.7 (3)
C25—C12—C13—C14−175.7 (2)N6—C9—N4—C10−0.8 (3)
C11—C12—C13—C142.5 (3)N5—C10—N4—C90.4 (4)
C25—C12—C13—C183.0 (3)N4—C10—N5—N60.1 (3)
C11—C12—C13—C18−178.76 (19)N4—C9—N6—N50.9 (3)
C12—C13—C14—C15178.8 (2)N4—C9—N6—C8175.9 (2)
C18—C13—C14—C150.1 (3)C10—N5—N6—C9−0.6 (3)
C13—C14—C15—C160.6 (4)C10—N5—N6—C8−176.1 (2)
C14—C15—C16—C17−0.5 (4)C11—C8—N6—C9−162.8 (3)
C15—C16—C17—C18−0.4 (4)C7—C8—N6—C922.9 (4)
C16—C17—C18—C19−178.6 (2)C11—C8—N6—N511.6 (3)
C16—C17—C18—C131.1 (4)C7—C8—N6—N5−162.7 (2)
C12—C13—C18—C19−0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.932.483.381 (3)162

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2650).

References

  • Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Corréa, R., Pereira, M. A. S., Buffon, D., Santos, L., Filho, V. C., Santos, A. R. S. & Nunes, R. J. (2001). Arch. Pharm. Med. Chem.334, 332–334. [PubMed]
  • Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.
  • Kranz, E., Krämer, W., Büchel, K. H., Brandes, W. & Forhberger, P. E. (1980). German Patent No. DE2832233.
  • Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113. [PMC free article] [PubMed]
  • Yan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography