PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1484.
Published online 2009 October 31. doi:  10.1107/S1600536809044766
PMCID: PMC2971096

Tetra-μ-benzoato-κ8 O:O′-bis­[(benzoic acid-κO)nickel(II)]

Abstract

The title compound, [Ni2(C7H5O2)4(C7H6O2)2], is composed of two NiII ions, four bridging benzoate anions and two η1-benzoic acid mol­ecules. The [Ni2(PhCOO)4] unit adopts a typical paddle-wheel conformation. The center between the two NiII atoms represents a crystallographic center of inversion. In addition, each NiII ion also coordinates to one O atom from a benzoic acid mol­ecule. The crystal packing is realised by inter­molecular hydrogen-bonding inter­actions and π–π stacking inter­actions, with a centroid–centroid distance of 3.921 (1) Å.

Related literature

For related benzoate complexes, see: Cotton et al. (2005 [triangle], 1987 [triangle], 1988 [triangle]); Bellitto et al. (1985 [triangle]); Figuerola et al. (2007 [triangle]); Gavrilenko et al. (2008 [triangle]); Shi et al. (2004 [triangle]); Zheng et al. (2004 [triangle]); Zhong et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1484-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C7H5O2)4(C7H6O2)2]
  • M r = 846.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1484-efi1.jpg
  • a = 10.7685 (8) Å
  • b = 11.7173 (7) Å
  • c = 15.258 (1) Å
  • β = 91.354 (3)°
  • V = 1924.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 273 K
  • 0.28 × 0.26 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008 [triangle]) T min = 0.759, T max = 0.819
  • 17534 measured reflections
  • 4639 independent reflections
  • 3789 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.055
  • S = 0.99
  • 4639 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044766/im2153sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044766/im2153Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Youth Foundation of Jiangxi Provincial Office of Education (GJJ09605, GJJ09355) and the Natural Science Foundation of Jiangxi Province (2008GZH0063) for financial support.

supplementary crystallographic information

Comment

Benzoic acid is the most simple aromatic carboxyl compound with well-known antibacterial activity. Over the past years, many metal complexes based on benzoic acid or benzoate ligands have been synthesized and characterized (Figuerola et al., 2007; Gavrilenko et al., 2008; Shi et al., 2004; Zheng et al., 2004). We also reported the Co(II) and Cd(II) complexes with benzoate and 2-aminopyridine ligands (Zhong et al., 2007; Zhong et al., 2008). As a continuation of this work, we herein report the synthesis and crystal structure of a nickel (II) complex exhibiting benzoate as well as benzoic acid ligands.

The title compound (I) is a typical paddle-wheel complex that have previously been observed (Bellitto et al., 1985; Cotton et al., 1987; Cotton et al., 1988). Two NiII ions are bridged by four benzoate anions ligand using a µ-COO- coordination mode. Each NiII also coordinates to one oxygen atom from one benzoic acid molecule in the axial position (Fig. 1). The center between the two nickel atoms represents a crystallographic center of inversion. The Ni—O bond lengths, ranging from 1.945 (1) Å to 2.193 (1) Å, are in the normal value range.The almost equivalent bond distances of O1—C8 and O2—C8 (1.260 (2) Å and 1.258 (2) Å) in one benzoate ligand and O3—C1 and O4—C1 (1.270 (2) Å and 1.255 (2) Å) in the other reflect the expected delocalization in the carboxylate unit. On the other hand bond distances of O5—C15 and O6—C15 (1.213 (2) Å and 1.317 (2) Å) in the axial benzoic acid ligands prove that it is not deprotonated and accordingly there is one single and one double bond. Albeit the short Ni···Ni distance of 2.6062 (4) Å there is no bonding interaction between both metal centers due to the d8 electron configuration of Ni2+ leading to an overall bond order of zero (Cotton et al., 2005)

The carboxyl group of the benzoic acid ligand (O6) acts as an intramolecular hydrogen bond donor site towards another oxygen atom of one of the bridging benzoate anions (O3). In addition, intermolecular contacts in terms of π–π stacking interactions with centroid centroid distances of 3.921 (1) Å are observed between the phenyl groups.

Experimental

All reagents are commercially available and were used without further purification. A mixture of Ni(NO3)2 × 4 H2O (0.5 mmol), sodium benzoate (1 mmol) and 2,2'-bipyridine (0.5 mmol) was dissolved in 10 ml water/methanol (1/1). After stirring for 30 min, the mixture was placed in a 20 ml Teflon-lined reactor and heated to 110 °C in an oven for 7 days. The resulting solution was filtered and the filtrate was allowed to stay at room temperature. Well shaped blue crystals suitable for X-rays diffraction were obtained after one week. Yield: 65.8% based on sodium benzoate.

Refinement

All H atoms were placed geometrically and were refined using a riding model with C—H and O—H distances of 0.93 Å and 0.82 Å and Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The structure of (I), showing 30% probability displacement ellipsoids and the atom-labeling scheme. [Symmetry code: (i) -x+1, -y, -z+2.]

Crystal data

[Ni2(C7H5O2)4(C7H6O2)2]F(000) = 872
Mr = 846.10Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7941 reflections
a = 10.7685 (8) Åθ = 2.3–28.0°
b = 11.7173 (7) ŵ = 1.04 mm1
c = 15.258 (1) ÅT = 273 K
β = 91.354 (3)°Block, blue
V = 1924.7 (2) Å30.28 × 0.26 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer4639 independent reflections
Radiation source: fine-focus sealed tube3789 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 28.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)h = −14→12
Tmin = 0.759, Tmax = 0.819k = −15→14
17534 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + 1.1987P] where P = (Fo2 + 2Fc2)/3
4639 reflections(Δ/σ)max = 0.002
254 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.517820 (18)0.106516 (17)0.979210 (13)0.03259 (6)
O10.42315 (11)−0.11994 (11)0.89928 (7)0.0471 (3)
O20.45485 (12)0.06289 (11)0.86345 (8)0.0499 (3)
O30.31459 (11)−0.05001 (10)1.05426 (8)0.0473 (3)
O40.34725 (11)0.13053 (10)1.01561 (8)0.0483 (3)
O50.56860 (12)0.28015 (11)0.94023 (9)0.0528 (3)
O60.75910 (14)0.25119 (13)0.89184 (13)0.0800 (5)
H60.74510.18580.90800.120*
C10.27981 (15)0.05301 (15)1.04542 (10)0.0397 (4)
C20.15133 (15)0.08413 (16)1.07061 (11)0.0428 (4)
C30.07758 (19)0.0110 (2)1.11745 (14)0.0656 (6)
H30.1080−0.05981.13530.079*
C4−0.0418 (2)0.0433 (2)1.13776 (17)0.0817 (7)
H4−0.0910−0.00531.17040.098*
C5−0.0880 (2)0.1463 (2)1.11020 (17)0.0768 (7)
H5−0.16900.16671.12300.092*
C6−0.0157 (2)0.2189 (2)1.06420 (18)0.0779 (7)
H6A−0.04720.28891.04560.093*
C70.10426 (18)0.18862 (18)1.04522 (15)0.0623 (6)
H70.15400.23931.01490.075*
C80.41868 (15)−0.03704 (15)0.84671 (11)0.0402 (4)
C90.36303 (15)−0.05843 (16)0.75772 (11)0.0429 (4)
C100.34030 (19)0.03208 (18)0.70105 (12)0.0567 (5)
H100.36400.10560.71700.068*
C110.2822 (2)0.0125 (2)0.62069 (14)0.0708 (6)
H110.26700.07310.58260.085*
C120.2468 (2)−0.0961 (2)0.59682 (14)0.0715 (6)
H120.2077−0.10870.54270.086*
C130.2689 (2)−0.1858 (2)0.65259 (14)0.0710 (6)
H130.2442−0.25910.63650.085*
C140.32799 (19)−0.16738 (18)0.73287 (12)0.0564 (5)
H140.3442−0.22860.77020.068*
C150.66085 (18)0.31531 (16)0.90494 (12)0.0464 (4)
C160.67474 (18)0.43389 (16)0.87387 (12)0.0470 (4)
C170.5774 (2)0.50892 (17)0.88474 (13)0.0563 (5)
H170.50480.48420.91050.068*
C180.5882 (2)0.62111 (19)0.85726 (14)0.0684 (6)
H180.52310.67200.86510.082*
C190.6951 (3)0.6569 (2)0.81847 (15)0.0758 (7)
H190.70210.73230.80000.091*
C200.7914 (3)0.5829 (2)0.80675 (17)0.0809 (7)
H200.86310.60770.77980.097*
C210.7825 (2)0.47092 (19)0.83488 (15)0.0670 (6)
H210.84840.42080.82770.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03193 (10)0.03109 (10)0.03470 (10)0.00072 (9)−0.00051 (7)0.00127 (9)
O10.0553 (7)0.0457 (7)0.0400 (6)−0.0009 (6)−0.0056 (5)−0.0001 (6)
O20.0593 (8)0.0479 (7)0.0420 (7)−0.0071 (6)−0.0089 (6)0.0007 (6)
O30.0406 (7)0.0409 (7)0.0607 (8)0.0068 (6)0.0076 (6)0.0041 (6)
O40.0381 (6)0.0430 (7)0.0640 (8)0.0051 (6)0.0062 (6)0.0046 (6)
O50.0531 (8)0.0408 (7)0.0648 (8)0.0010 (6)0.0111 (6)0.0076 (6)
O60.0642 (10)0.0483 (9)0.1289 (15)0.0090 (8)0.0353 (9)0.0193 (9)
C10.0377 (9)0.0440 (10)0.0373 (9)0.0044 (8)−0.0017 (7)−0.0025 (7)
C20.0347 (9)0.0493 (11)0.0443 (9)0.0041 (8)0.0010 (7)−0.0063 (8)
C30.0504 (12)0.0710 (15)0.0759 (15)0.0086 (11)0.0157 (10)0.0131 (12)
C40.0524 (14)0.094 (2)0.1000 (19)0.0019 (13)0.0287 (13)0.0100 (16)
C50.0427 (12)0.0887 (19)0.0995 (19)0.0124 (12)0.0143 (12)−0.0141 (15)
C60.0511 (13)0.0690 (16)0.114 (2)0.0214 (12)0.0130 (13)0.0013 (14)
C70.0466 (11)0.0550 (13)0.0860 (15)0.0113 (10)0.0142 (10)0.0041 (11)
C80.0348 (9)0.0466 (10)0.0393 (9)0.0026 (8)0.0013 (7)−0.0023 (8)
C90.0380 (9)0.0526 (11)0.0381 (9)−0.0003 (8)−0.0004 (7)−0.0031 (8)
C100.0632 (13)0.0571 (13)0.0493 (11)−0.0062 (10)−0.0107 (9)0.0030 (9)
C110.0832 (16)0.0773 (16)0.0508 (12)0.0016 (13)−0.0206 (11)0.0083 (11)
C120.0783 (16)0.0869 (18)0.0483 (12)0.0023 (14)−0.0214 (11)−0.0103 (12)
C130.0864 (17)0.0681 (15)0.0578 (13)−0.0087 (13)−0.0151 (12)−0.0166 (11)
C140.0677 (13)0.0549 (12)0.0463 (10)−0.0010 (10)−0.0069 (9)−0.0046 (9)
C150.0518 (11)0.0414 (10)0.0460 (10)0.0004 (9)0.0013 (8)−0.0009 (8)
C160.0575 (11)0.0395 (10)0.0441 (10)−0.0042 (9)−0.0002 (8)−0.0006 (8)
C170.0650 (13)0.0499 (12)0.0539 (12)0.0032 (10)−0.0006 (10)0.0029 (9)
C180.0915 (17)0.0472 (13)0.0662 (14)0.0111 (12)−0.0076 (12)0.0016 (10)
C190.112 (2)0.0447 (13)0.0706 (15)−0.0124 (14)−0.0019 (14)0.0078 (11)
C200.0904 (19)0.0598 (16)0.0932 (18)−0.0205 (14)0.0171 (15)0.0114 (13)
C210.0697 (15)0.0512 (13)0.0808 (15)−0.0051 (11)0.0141 (12)0.0040 (11)

Geometric parameters (Å, °)

Ni1—O21.9452 (12)C7—H70.9300
Ni1—O41.9519 (12)C8—C91.492 (2)
Ni1—O1i1.9520 (11)C9—C141.382 (3)
Ni1—O3i1.9999 (12)C9—C101.386 (3)
Ni1—O52.1926 (13)C10—C111.382 (3)
Ni1—Ni1i2.6062 (4)C10—H100.9300
O1—C81.260 (2)C11—C121.375 (3)
O1—Ni1i1.9520 (11)C11—H110.9300
O2—C81.258 (2)C12—C131.370 (3)
O3—C11.270 (2)C12—H120.9300
O3—Ni1i1.9999 (12)C13—C141.384 (3)
O4—C11.255 (2)C13—H130.9300
O5—C151.213 (2)C14—H140.9300
O6—C151.317 (2)C15—C161.477 (3)
O6—H60.8200C16—C171.381 (3)
C1—C21.490 (2)C16—C211.386 (3)
C2—C31.379 (3)C17—C181.385 (3)
C2—C71.377 (3)C17—H170.9300
C3—C41.382 (3)C18—C191.373 (3)
C3—H30.9300C18—H180.9300
C4—C51.368 (3)C19—C201.367 (3)
C4—H40.9300C19—H190.9300
C5—C61.359 (3)C20—C211.384 (3)
C5—H50.9300C20—H200.9300
C6—C71.377 (3)C21—H210.9300
C6—H6A0.9300
O2—Ni1—O489.20 (5)O2—C8—O1125.54 (16)
O2—Ni1—O1i169.19 (5)O2—C8—C9117.17 (16)
O4—Ni1—O1i90.32 (5)O1—C8—C9117.27 (16)
O2—Ni1—O3i88.77 (5)C14—C9—C10119.50 (17)
O4—Ni1—O3i168.91 (5)C14—C9—C8120.40 (17)
O1i—Ni1—O3i89.64 (5)C10—C9—C8120.01 (17)
O2—Ni1—O594.67 (5)C11—C10—C9119.7 (2)
O4—Ni1—O5100.71 (5)C11—C10—H10120.1
O1i—Ni1—O596.03 (5)C9—C10—H10120.1
O3i—Ni1—O590.32 (5)C12—C11—C10120.4 (2)
O2—Ni1—Ni1i85.36 (4)C12—C11—H11119.8
O4—Ni1—Ni1i85.63 (4)C10—C11—H11119.8
O1i—Ni1—Ni1i83.83 (4)C13—C12—C11120.16 (19)
O3i—Ni1—Ni1i83.34 (4)C13—C12—H12119.9
O5—Ni1—Ni1i173.66 (4)C11—C12—H12119.9
C8—O1—Ni1i123.31 (11)C12—C13—C14120.0 (2)
C8—O2—Ni1121.90 (11)C12—C13—H13120.0
C1—O3—Ni1i123.58 (11)C14—C13—H13120.0
C1—O4—Ni1123.73 (11)C13—C14—C9120.3 (2)
C15—O5—Ni1130.36 (12)C13—C14—H14119.9
C15—O6—H6109.5C9—C14—H14119.9
O4—C1—O3123.69 (15)O5—C15—O6122.89 (17)
O4—C1—C2117.72 (15)O5—C15—C16123.51 (18)
O3—C1—C2118.58 (16)O6—C15—C16113.59 (17)
C3—C2—C7119.05 (17)C17—C16—C21119.83 (19)
C3—C2—C1122.08 (17)C17—C16—C15118.53 (18)
C7—C2—C1118.87 (17)C21—C16—C15121.64 (18)
C2—C3—C4119.7 (2)C16—C17—C18119.9 (2)
C2—C3—H3120.1C16—C17—H17120.0
C4—C3—H3120.1C18—C17—H17120.0
C5—C4—C3120.4 (2)C19—C18—C17119.8 (2)
C5—C4—H4119.8C19—C18—H18120.1
C3—C4—H4119.8C17—C18—H18120.1
C6—C5—C4120.1 (2)C18—C19—C20120.6 (2)
C6—C5—H5119.9C18—C19—H19119.7
C4—C5—H5119.9C20—C19—H19119.7
C5—C6—C7119.9 (2)C19—C20—C21120.2 (2)
C5—C6—H6A120.0C19—C20—H20119.9
C7—C6—H6A120.0C21—C20—H20119.9
C6—C7—C2120.7 (2)C20—C21—C16119.7 (2)
C6—C7—H7119.6C20—C21—H21120.2
C2—C7—H7119.6C16—C21—H21120.2

Symmetry codes: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.821.812.626 (2)170

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2153).

References

  • Bellitto, C., Dessy, G. & Fares, V. (1985). Inorg. Chem.24, 2815–2820.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cotton, F.-A., Matusz, M. & Poli, R. (1987). Inorg. Chem.26, 1472–1474.
  • Cotton, F.-A., Matusz, M., Poli, R. & Feng, X. (1988). J. Am. Chem. Soc.110, 1144–1154.
  • Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms New York: Springer Science and Business Media Inc.
  • Figuerola, A., Tangoulis, V., Ribas, J., Hartl, H., Brudgam, I., Maestro, M. & Diaz, C. (2007). Inorg. Chem.46, 11017–11024. [PubMed]
  • Gavrilenko, K.-S., Cador, O., Bernot, K., Rosa, P., Sessoli, R., Golhen, S., Pavlishchuk, V.-V. & Ouahab, L. (2008). Chem. Eur. J.14, 2034–2043. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, X., Zhu, G.-S., Fang, Q.-R., Wu, G., Tian, G., Wang, R.-W., Zhang, D.-L., Xue, M. & Qiu, S.-L. (2004). Eur. J. Inorg. Chem. pp. 185–191.
  • Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem.43, 830–838. [PubMed]
  • Zhong, D.-C., Guo, G.-Q., Deng, J.-H., Zhu, R.-H. & Zhou, Y.-B. (2007). Acta Cryst. E63, m3091–m3092.
  • Zhong, D.-C., Guo, G.-Q., Zuo, X.-H., Deng, J.-H., Yuan, L. & Zhu, R.-H. (2008). Acta Cryst. E64, m88–m89. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography