PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2716.
Published online 2009 October 10. doi:  10.1107/S160053680904032X
PMCID: PMC2971092

5-(4,5-Diiodo-1,3-dithiol-2-yl­idene)-4′,5′-bis(methyl­sulfan­yl)-2,2′-bi-1,3-dithiol-4(5H)-one

Abstract

The mol­ecular framework of the title compound, C11H6I2OS8, is almost planar [maximum deviation = 0.057 (5) Å] except for the two methyl­sulfanyl groups, which are twisted relative to the mol­ecular skeleton, with C—C—S—C torsion angles of 49.74 (22) and 82.91 (21)°. In the crystal, mol­ecules are stacked alternately in opposite orientations, forming a one-dimensional column along the b axis. The inter­action between adjacent columns is accomplished through S(...)S [3.4289 (5) Å], S(...)I [3.4498 (4) Å] and O(...)I [2.812 (2) Å] contacts.

Related literature

For background to tetra­thia­fulvalenoquinone-1,3-dithiol­emethide derivatives, see: Matsumoto et al. (2002a [triangle],b [triangle]; 2003 [triangle]); Hiraoka et al. (2007 [triangle]); Sugimoto (2008 [triangle]). For the synthesis, see: Iwamatsu et al. (1999 [triangle]). For background to inter­molecular I(...)O contacts, see: Etter (1976a [triangle],b [triangle]); Groth & Hassel (1965 [triangle]); Leser & Rabinovich (1978 [triangle]). For van der Waals radii, see: Bondi (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2716-scheme1.jpg

Experimental

Crystal data

  • C11H6I2OS8
  • M r = 664.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2716-efi1.jpg
  • a = 7.7642 (14) Å
  • b = 17.652 (3) Å
  • c = 14.124 (3) Å
  • β = 98.188 (2)°
  • V = 1916.0 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.15 mm−1
  • T = 93 K
  • 0.10 × 0.07 × 0.03 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.682, T max = 0.886
  • 11092 measured reflections
  • 4403 independent reflections
  • 3764 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.051
  • S = 0.99
  • 4403 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XSHEL (Bruker, 2002 [triangle]); software used to prepare material for publication: XCIF (Bruker, 2001 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904032X/tk2544sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904032X/tk2544Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Hamashin Regional Development Foundation and the Japan Chemical Innovation Institute.

supplementary crystallographic information

Comment

New donor molecules featuring a skeleton of tetrathiafulvalenoquinone-1,3-dithiolemethide are used for the preparation of charge transfer (CT) salts with magnetic metal anions (Matsumoto et al., 2002a,b, 2003; Hiraoka et al., 2007; Sugimoto 2008). In CT salts these molecules can form unique crystal structures with channels in addition to the usual layer stacking structures as a result of their molecular skeletons and intermolecular S···S contacts. The introduction of iodide atoms as substituents in the molecular skeleton is expected to enhance intermolecular interaction through the formation of S···I and O···I heteroatom contacts. These contacts are of special interest in these structures as they may increase the dimensionality of aggregation in the solid-state. In this connection, the crystal structure of the title compound, (I), was investigated.

The molecular framework of (I), Fig. 1, except for two methylsulfanyl groups, is almost planar. The displacements of atoms S7, S8, I1, and I2 relative to the plane of the skeleton are 0.2056 (17), 0.230 (2), -0.1867 (15) and -0.1274 (18) Å, respectively. The torsion angles of the two methylsulfanyl groups are -49.74 (22)° for C11—S8—C9—S6 and -89.91 (21)° for C10—S7—C8—S5.

In the crystal structure, the molecules are alternatively stacked in opposite orientations to form a one-dimensional column along the a axis (Fig. 2). Stacked molecules are separated by interplanar distances greater than 3.54 Å and have fairly poor overlap. However, some effective side-by-side contacts are observed between molecules of adjacent columns. The interaction between adjacent columns is accomplished through contacts between different sulfur atoms [S2···S8i = 3.4289 (5) Å] along the b axis, between sulfur and iodide atoms [S7···I2ii = 3.4498 (4) Å] along the c axis, and between oxygen and iodide atoms [O1···I1iii = 2.812 (2) Å] along the b axis; symmetry operation i: -1/2+x, 1/2-y, -1/2+z; ii: 1+x, y, 1+z; and iii: 1/2+x, -1/2-y, 1/2+z. These distances are shorter than the sum of corresponding van der Waals radii, i.e. 3.60 Å for S···S, 3.78 Å for S···I and 3.32 Å for O···I (Bondi, 1964). An interesting feature of this structure is the fairly shorter intermolecular O···I contacts. Such strong oxygen-halogen interactions have been observed previously (Groth & Hassel, 1965; Etter, 1976a,b). The intermolecular angles are 124.20 (19)° for C5=O1···I1 and 176.17 (10)° for O1···I1—C2 are fairly close to the ideal geometry (120° for C=O···I and 180° for O···I—C) which has been proposed for these types of associations (Leser & Rabinovich, 1978).

Experimental

Compound (I) was synthesized by a modification of the method used for the preparation of bis(methylsulfanyl)tetrathiafulvalenoquinone-1,3-dithiolemethide (Iwamatsu et al., 1999). Bis(tetraethylammonium)bis(2,3-bis(methylsulfanyl)tetrathiafulvalenyl-6,7- dithiolato)zinc (269 mg, 0.258 mmol) was reacted with 4,5-diiodo-2-methylsulfanyl-1,3-dithiole-2,3-dithiolium tetrafluoroborate (535 mg, 1.10 mmol) in THF-DMF (5:1 = v/v,) at room temperature under nitrogen and stirring for 12 h. After separation of the reaction mixture by column chromatography on silica gel (eluent: CS2) followed by recrystallization from CS2/n-hexane, bis(dimethylsulfanyl)tetrathiafulvalenothioquinone- 4,5-diiodo-1,3-dithiolemethide (II) was obtained as a dark-green needles in 72% yield. When compound (II) (87 mg, 0.127 mmol) was reacted with mercury(II) acetate (90 mg, 0.282 mmol) in THF-AcOH (5:1 =v/v), compound (I) was obtained as a dark-red plates in 47% yield by recrystallization from CS2/n-hexane.

Refinement

The H atoms were geometrically placed with C-H = 0.98Å, and refined as riding with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing atom labelling and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Projection of the crystal packing in (I) down the bc plane. The S···S (black), S···I (blue) and O···I (green) contacts are shown with dashed lines.

Crystal data

C11H6I2OS8F(000) = 1256
Mr = 664.44Dx = 2.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7642 (14) ÅCell parameters from 3988 reflections
b = 17.652 (3) Åθ = 2.3–27.5°
c = 14.124 (3) ŵ = 4.15 mm1
β = 98.188 (2)°T = 93 K
V = 1916.0 (6) Å3Plate, dark-red
Z = 40.10 × 0.07 × 0.03 mm

Data collection

Bruker APEXII CCD area-detector diffractometer4403 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode3764 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirrorRint = 0.030
Detector resolution: 8.333 pixels mm-1θmax = 27.6°, θmin = 1.9°
[var phi] and ω scansh = −6→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −22→22
Tmin = 0.682, Tmax = 0.886l = −18→15
11092 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.019P)2] where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.006
201 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I2−0.12578 (3)0.013561 (12)0.111820 (14)0.01793 (6)
I1−0.15011 (3)−0.203405 (12)0.164968 (14)0.01569 (6)
C90.6068 (4)0.19937 (18)0.7771 (2)0.0152 (7)
C1−0.0462 (4)−0.11760 (18)0.2570 (2)0.0149 (7)
C60.4087 (4)0.01803 (18)0.6428 (2)0.0136 (6)
C40.2274 (4)−0.04697 (17)0.4954 (2)0.0120 (6)
C80.6498 (4)0.14725 (18)0.8460 (2)0.0154 (7)
C2−0.0379 (4)−0.04383 (18)0.2381 (2)0.0143 (7)
C30.1281 (4)−0.06019 (17)0.4091 (2)0.0123 (6)
C70.4882 (4)0.07062 (18)0.7018 (2)0.0142 (7)
C50.2707 (4)−0.10758 (18)0.5631 (2)0.0142 (6)
S60.49464 (10)0.16647 (5)0.66722 (6)0.01662 (17)
S40.30314 (10)0.04434 (4)0.52857 (5)0.01454 (16)
S20.06947 (10)0.01342 (4)0.32957 (5)0.01350 (16)
S70.75758 (11)0.16499 (5)0.96192 (6)0.02020 (18)
S50.59033 (10)0.05246 (5)0.81921 (6)0.01688 (17)
S30.39758 (10)−0.07854 (5)0.67194 (6)0.01666 (17)
S10.05054 (10)−0.14886 (4)0.36963 (6)0.01449 (17)
S80.63332 (11)0.29739 (5)0.79188 (6)0.02255 (19)
O10.2235 (3)−0.17383 (12)0.54846 (15)0.0180 (5)
C110.7178 (5)0.3241 (2)0.6839 (3)0.0263 (8)
H13A0.83050.29940.68250.039*
H13B0.73260.37920.68250.039*
H13C0.63620.30810.62800.039*
C100.5747 (5)0.1720 (2)1.0279 (2)0.0303 (9)
H12A0.50260.21561.00450.045*
H12B0.61740.17871.09600.045*
H12C0.50510.12561.01870.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I20.01932 (12)0.02057 (12)0.01307 (11)0.00006 (9)−0.00063 (8)0.00219 (8)
I10.01529 (11)0.01492 (11)0.01614 (11)−0.00063 (8)−0.00027 (8)−0.00382 (8)
C90.0150 (16)0.0153 (17)0.0153 (16)−0.0013 (13)0.0020 (12)−0.0021 (13)
C10.0128 (15)0.0164 (17)0.0153 (16)−0.0002 (13)0.0014 (12)−0.0051 (13)
C60.0140 (15)0.0145 (17)0.0117 (15)0.0028 (13)−0.0003 (12)0.0016 (12)
C40.0151 (15)0.0091 (16)0.0122 (15)0.0011 (12)0.0028 (12)−0.0019 (12)
C80.0142 (16)0.0163 (17)0.0156 (17)−0.0025 (13)0.0019 (13)−0.0050 (13)
C20.0120 (15)0.0183 (18)0.0118 (16)−0.0014 (13)−0.0016 (12)0.0003 (13)
C30.0119 (15)0.0114 (16)0.0141 (16)0.0013 (12)0.0038 (12)0.0009 (12)
C70.0119 (15)0.0174 (17)0.0136 (16)−0.0007 (12)0.0029 (12)−0.0011 (13)
C50.0103 (15)0.0164 (17)0.0165 (16)0.0033 (12)0.0037 (12)0.0009 (13)
S60.0201 (4)0.0142 (4)0.0148 (4)−0.0009 (3)0.0000 (3)−0.0002 (3)
S40.0172 (4)0.0111 (4)0.0143 (4)−0.0004 (3)−0.0011 (3)−0.0005 (3)
S20.0170 (4)0.0104 (4)0.0123 (4)−0.0004 (3)−0.0005 (3)0.0008 (3)
S70.0217 (4)0.0225 (5)0.0151 (4)−0.0016 (4)−0.0021 (3)−0.0028 (3)
S50.0198 (4)0.0152 (4)0.0149 (4)−0.0016 (3)−0.0003 (3)−0.0011 (3)
S30.0206 (4)0.0137 (4)0.0143 (4)−0.0007 (3)−0.0023 (3)0.0011 (3)
S10.0175 (4)0.0101 (4)0.0150 (4)0.0002 (3)−0.0009 (3)−0.0004 (3)
S80.0317 (5)0.0141 (4)0.0218 (5)−0.0030 (4)0.0036 (4)−0.0037 (3)
O10.0220 (12)0.0136 (12)0.0170 (12)−0.0005 (10)−0.0016 (9)0.0008 (9)
C110.032 (2)0.0164 (19)0.031 (2)−0.0020 (15)0.0087 (16)0.0030 (15)
C100.036 (2)0.036 (2)0.0183 (19)0.0172 (18)0.0010 (15)−0.0053 (16)

Geometric parameters (Å, °)

I2—C22.080 (3)C2—S21.755 (3)
I1—C12.082 (3)C3—S21.736 (3)
C9—C81.347 (4)C3—S11.740 (3)
C9—S81.751 (3)C7—S61.764 (3)
C9—S61.766 (3)C7—S51.763 (3)
C1—C21.333 (4)C5—O11.234 (4)
C1—S11.749 (3)C5—S31.780 (3)
C6—C71.338 (4)S7—C101.810 (4)
C6—S31.759 (3)S8—C111.807 (4)
C6—S41.765 (3)C11—H13A0.9800
C4—C31.366 (4)C11—H13B0.9800
C4—C51.442 (4)C11—H13C0.9800
C4—S41.756 (3)C10—H12A0.9800
C8—S71.757 (3)C10—H12B0.9800
C8—S51.763 (3)C10—H12C0.9800
C8—C9—S8125.2 (2)O1—C5—C4123.8 (3)
C8—C9—S6116.8 (2)O1—C5—S3122.1 (2)
S8—C9—S6117.69 (18)C4—C5—S3114.0 (2)
C2—C1—S1117.6 (2)C7—S6—C995.85 (15)
C2—C1—I1127.7 (2)C4—S4—C695.57 (15)
S1—C1—I1114.61 (17)C3—S2—C295.67 (15)
C7—C6—S3124.1 (2)C8—S7—C10100.80 (15)
C7—C6—S4120.0 (2)C8—S5—C795.65 (15)
S3—C6—S4115.91 (17)C6—S3—C596.70 (15)
C3—C4—C5120.9 (3)C3—S1—C195.27 (14)
C3—C4—S4121.3 (2)C9—S8—C11101.97 (16)
C5—C4—S4117.8 (2)S8—C11—H13A109.5
C9—C8—S7126.0 (3)S8—C11—H13B109.5
C9—C8—S5117.6 (2)H13A—C11—H13B109.5
S7—C8—S5116.41 (18)S8—C11—H13C109.5
C1—C2—S2116.5 (2)H13A—C11—H13C109.5
C1—C2—I2128.9 (2)H13B—C11—H13C109.5
S2—C2—I2114.47 (17)S7—C10—H12A109.5
C4—C3—S2120.8 (2)S7—C10—H12B109.5
C4—C3—S1124.4 (2)H12A—C10—H12B109.5
S2—C3—S1114.77 (16)S7—C10—H12C109.5
C6—C7—S6121.5 (2)H12A—C10—H12C109.5
C6—C7—S5124.4 (3)H12B—C10—H12C109.5
S6—C7—S5114.10 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2544).

References

  • Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  • Bruker (2001). XCIF Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). XSHEL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Etter, M. C. (1976a). J. Am. Chem. Soc.98, 5736–5331.
  • Etter, M. C. (1976b). J. Solid. State. Chem.16, 399–411.
  • Groth, P. & Hassel, O. (1965). Acta Chem. Scand.19, 1733–1746.
  • Hiraoka, T., Fujiwara, H., Sugimoto, T., Nakazumi, H., Noguchi, S., Kuribayashi, A., Ishida, T., Yokogawa, K., Murata, K., Mori, T., Aruga-Katori, H., Kimura, S. & Hagiwara, M. (2007). J. Mater. Chem.17, 1664–1673.
  • Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem Lett 28, 329–330.
  • Leser, J. & Rabinovich, D. (1978). Acta Cryst. B34, 2250–2252.
  • Matsumoto, T., Kamada, Y., Sugimoto, T., Tada, T., Nakazumi, H., Kawakami, T. & Yamaguchi, K. (2003). Synth. Met.135--136, 575–576.
  • Matsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Noguchi, S., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Toyota, N., Endo, S. & Takahashi, K. (2002a). Inorg. Chem.41, 4763–4769. [PubMed]
  • Matsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Matsui, H., Toyota, N., Endo, S. & Takahashi, K. (2002b). J. Solid. State. Chem.168, 408–417.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sugimoto, T. (2008). Chem. Lett.37, 896–901.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography