PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): i79–i80.
Published online 2009 October 17. doi:  10.1107/S1600536809039336
PMCID: PMC2971091

Tetra­potassium hepta­cyanido­molybdate(III) dihydrate

Abstract

The asymmetric unit of the title compound, KI 4[MoIII(CN)7]·2H2O, consists of one [Mo(CN)7]4− anion, four K+ cations, and two water mol­ecules. The [MoIII(CN)7]4− anion has a seven-coordinated capped-trigonal-prismatic coordination geometry. The site-occupancy factors of the disordered water mol­ecules were set at 0.90, 0.60 and 0.50. The H-atom positions could not be determined for two of the water mol­ecules. The H atoms of the water with a site-occupancy factor of 0.90 were refined using O—H and H(...)H distance restraints.

Related literature

For the synthesis and spectroscopic information for the title compound, see: Young (1932 [triangle]); Rossman et al. (1973 [triangle]). For octa­cyanido­metalate-based materials with photomagnetic and magnetic properties, see: Arimoto et al. (2003 [triangle]); Catala et al. (2005 [triangle]); Ohkoshi et al. (2007 [triangle], 2008 [triangle]). For the related hepta­cyanido molybdate(III) crystal structure with D5h and C2v symmetry, see: Hursthouse et al. (1980 [triangle])); Larionova et al. (2004 [triangle]); For a hepta­cyanido molybdate(II) crystal structure with Cs symmetry, see: Drew et al. (1977 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00i79-scheme1.jpg

Experimental

Crystal data

  • K4[Mo(CN)7]·2H2O
  • M r = 468.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i79-efi1.jpg
  • a = 8.8813 (5) Å
  • b = 9.2896 (4) Å
  • c = 9.7221 (4) Å
  • α = 86.6480 (13)°
  • β = 82.2150 (19)°
  • γ = 71.2570 (17)°
  • V = 752.48 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.99 mm−1
  • T = 90 K
  • 0.10 × 0.05 × 0.02 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1999 [triangle]) T min = 0.826, T max = 0.961
  • 7367 measured reflections
  • 3421 independent reflections
  • 2893 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.153
  • S = 1.25
  • 3421 reflections
  • 210 parameters
  • 3 restraints
  • H-atom parameters not defined
  • Δρmax = 2.85 e Å−3
  • Δρmin = −1.08 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalStructure (Rigaku, 2007 [triangle]); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997 [triangle]) and PyMOLWin (DeLano, 2007 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039336/si2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039336/si2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The present research was supported in part by a Grant-in-Aid for Young Scientists (S) from JSPS, a grant for the Global COE Program, Chemistry Innovation through Cooperation of Science and Engineering, the Photon Frontier Network Program from MEXT, Japan, the Kurata Memorial Hitachi Science and Technology Foundation, and the Inamori Foundation. YT is grateful to JSPS Research Fellowships for Young Scientists. A part of this work was conducted at the Center for Nano Lithography & Analysis at the University of Tokyo, supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

supplementary crystallographic information

Comment

In the field of molecule-based magnets, cyano-bridged metal assemblies have been much studied to demonstrate novel functionalities. Octacyanometalate-based materials show interesting functionalities such as photomagnetism (Arimoto et al., 2003; Catala et al., 2005; Ohkoshi et al., 2008) and chemically sensitive magnetism (Ohkoshi et al., 2007). As a versatile class of building blocks, a heptacyanomolybdate ion [MoIII(CN)7]4- is also attractive because this metal complex can adopt various spatial configurations, depending on the chemical environment, pentagonal bipyramid (D5 h) and capped trigonal prism (C2v) (Rossman et al., 1973; Larionova et al., 2004). Although the coordination geometry of pentagonal bipyramid (D5 h) has been observed with the mixed salt NaIKI3[Mo(CN)7]2H2O, that of capped trigonal prism (C2 v) has not been reported (Hursthouse et al., 1980, Drew et al., 1977). In this paper, we report the crystal structure of KI4[MoIII(CN)7]2H2O with capped trigonal prism (C2v) symmetry, which has the asymmetric unit of one [MoIII(CN)7]4- anion, four K+ cations, and two water molecules distributed over three sites with site occupation factors (s.o.f's) of 0.90, 0.60 and 0.50. (Fig. 1). The synthesis and the spectral information of the title compound as been reported by Young (1932) and Rossman et al., (1973).

Experimental

The title compound was prepared by reacting (NH4)2[MoCl5(H2O)] (1.81 g) with KCN (4 g) in H2O (23 ml) at room temperature. The prepared compound was a green plate-type crystal. Elemental analyses: calcd for KI4[MoIII(CN)7]2.75H2O, Calculated: Mo, 19.82%; C, 17.37%; H, 1.15%; N, 20.26%. Found: Mo, 19.44%; C, 17.65%; H, 1.13%; N, 20.01%. In the Infrared (IR) spectra, cyano stretching peaks were observed at 2114 and 2069 cm-1.

Refinement

The H atoms of the solvent water molecules, O2 and O3, could not be located. The maximum and minimum residual electron density peaks were located 0.18 and 0.91 Å from the K3 atom and the Mo1 atom, respectively.

Figures

Fig. 1.
Thermal ellipsoid plots (50% probability level) of independent atoms of KI4[MoIII(CN)7]2H2O. Positions of hydrogen atoms of the disordered water molecules could not be determined.

Crystal data

K4[Mo(CN)7]·2H2OZ = 2
Mr = 468.29F(000) = 454
Triclinic, P1Dx = 2.067 Mg m3
a = 8.8813 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.2896 (4) ÅCell parameters from 6568 reflections
c = 9.7221 (4) Åθ = 3.0–27.5°
α = 86.6480 (13)°µ = 1.99 mm1
β = 82.2150 (19)°T = 90 K
γ = 71.2570 (17)°Platelet, green
V = 752.48 (6) Å30.10 × 0.05 × 0.02 mm

Data collection

Rigaku R-AXIS RAPID diffractometer3421 independent reflections
Radiation source: fine-focus sealed tube2893 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1999)h = −11→11
Tmin = 0.826, Tmax = 0.961k = −12→11
7367 measured reflectionsl = −12→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054H-atom parameters not defined
wR(F2) = 0.153w = 1/[σ2(Fo2) + (0.0908P)2] where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
3421 reflectionsΔρmax = 2.85 e Å3
210 parametersΔρmin = −1.08 e Å3
3 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Some weak peaks appeared around all O atoms (O1, O2, and O3). Although we could assign the H atoms of O1 with restraints of DFIX (O—H 0.85 0.02 Å and H···H distances about 1.38 0.02 Å), the H atoms of O2 and O3 could not be placed using restraints of DFIX.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mo1−0.28013 (4)0.18814 (3)0.22632 (3)0.00989 (16)
K40.28925 (10)0.01355 (9)0.17415 (9)0.0124 (2)
K10.27995 (11)−0.37242 (10)0.36699 (9)0.0146 (2)
K2−0.28226 (10)0.58985 (9)0.03172 (9)0.0129 (2)
K3−0.27856 (10)−0.21632 (9)0.42126 (9)0.0133 (2)
N3−0.3585 (4)−0.1085 (4)0.1198 (4)0.0150 (7)
N4−0.3673 (5)0.3229 (4)−0.0868 (4)0.0182 (8)
N1−0.3641 (5)0.0960 (4)0.5568 (4)0.0157 (7)
N20.0322 (5)−0.0987 (5)0.2950 (5)0.0298 (10)
N50.0203 (5)0.3068 (5)0.0908 (5)0.0336 (11)
C6−0.3280 (5)0.4105 (4)0.3111 (4)0.0144 (8)
C4−0.3348 (5)0.2756 (4)0.0224 (4)0.0127 (7)
C5−0.0799 (5)0.2568 (5)0.1380 (5)0.0219 (9)
C1−0.3329 (5)0.1282 (4)0.4402 (4)0.0125 (7)
C3−0.3286 (5)−0.0076 (4)0.1562 (4)0.0136 (8)
C2−0.0739 (5)0.0069 (5)0.2682 (5)0.0206 (9)
N6−0.3562 (5)0.5301 (4)0.3555 (4)0.0174 (8)
C7−0.5434 (6)0.2691 (4)0.2568 (4)0.0166 (8)
N7−0.6817 (5)0.3103 (4)0.2748 (4)0.0209 (8)
O1−0.0067 (7)−0.3954 (6)0.2344 (7)0.0609 (15)0.90
O2−0.0141 (11)−0.2434 (11)0.5544 (12)0.075 (3)0.60
O3−0.0025 (13)−0.4462 (11)0.4867 (14)0.070 (3)0.50
H10.019 (9)−0.488 (3)0.199 (6)0.05 (2)*0.90
H20.007 (9)−0.343 (6)0.157 (4)0.05 (2)*0.90

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.0125 (2)0.0083 (2)0.0092 (2)−0.00373 (15)−0.00109 (14)−0.00049 (14)
K40.0150 (5)0.0119 (5)0.0117 (5)−0.0060 (4)−0.0028 (4)0.0013 (4)
K10.0201 (5)0.0125 (4)0.0116 (5)−0.0058 (4)−0.0027 (4)0.0011 (3)
K20.0167 (5)0.0075 (4)0.0163 (5)−0.0065 (4)−0.0022 (4)0.0014 (4)
K30.0172 (5)0.0080 (4)0.0156 (5)−0.0044 (4)−0.0034 (4)−0.0020 (4)
N30.0166 (18)0.0182 (17)0.0096 (16)−0.0053 (14)−0.0019 (13)0.0032 (13)
N40.0192 (19)0.0188 (18)0.0187 (19)−0.0099 (15)0.0020 (15)−0.0051 (14)
N10.0215 (19)0.0164 (17)0.0104 (17)−0.0066 (14)−0.0051 (14)0.0010 (13)
N20.020 (2)0.030 (2)0.037 (3)−0.0057 (17)−0.0057 (18)0.006 (2)
N50.018 (2)0.036 (3)0.045 (3)−0.0082 (19)−0.004 (2)0.012 (2)
C60.018 (2)0.0144 (18)0.0123 (19)−0.0064 (15)−0.0022 (15)−0.0001 (14)
C40.019 (2)0.0074 (16)0.0137 (19)−0.0076 (14)−0.0029 (15)0.0011 (14)
C50.016 (2)0.016 (2)0.033 (3)−0.0037 (16)−0.0025 (18)0.0030 (17)
C10.0159 (19)0.0104 (17)0.0136 (19)−0.0065 (14)−0.0026 (15)−0.0040 (14)
C30.0150 (19)0.0171 (19)0.0077 (17)−0.0042 (15)−0.0020 (14)0.0036 (14)
C20.018 (2)0.023 (2)0.023 (2)−0.0085 (17)−0.0036 (17)0.0039 (17)
N60.024 (2)0.0174 (18)0.0123 (18)−0.0094 (15)−0.0003 (14)0.0027 (13)
C70.027 (2)0.0129 (18)0.0099 (18)−0.0064 (16)−0.0014 (16)−0.0054 (14)
N70.019 (2)0.0197 (19)0.026 (2)−0.0070 (15)−0.0041 (16)−0.0097 (16)
O10.056 (4)0.035 (3)0.090 (4)−0.013 (3)−0.004 (3)−0.006 (3)
O20.058 (6)0.070 (6)0.088 (7)−0.008 (5)−0.014 (5)0.015 (5)
O30.052 (6)0.054 (6)0.105 (9)−0.024 (6)−0.009 (6)0.022 (6)

Geometric parameters (Å, °)

Mo1—C22.120 (4)K2—N4vii2.934 (4)
Mo1—C52.135 (4)K2—N7vii3.096 (4)
Mo1—C12.150 (4)K2—C43.109 (4)
Mo1—C42.156 (4)K2—N43.134 (4)
Mo1—C62.160 (4)K2—C63.150 (4)
Mo1—C32.164 (4)K2—N63.181 (4)
Mo1—C72.198 (5)K2—N53.188 (4)
K4—N1i2.836 (4)K2—C53.229 (4)
K4—N22.888 (5)K2—C4vii3.329 (4)
K4—N3ii2.948 (4)K2—C7vii3.380 (4)
K4—N3iii2.983 (4)K3—O22.767 (10)
K4—N7ii3.076 (4)K3—N6viii2.788 (4)
K4—N4iii3.119 (4)K3—O32.806 (11)
K4—N53.141 (4)K3—O12.912 (6)
K4—C3iii3.185 (4)K3—N1ix2.989 (4)
K4—C23.250 (4)K3—N7ix3.039 (4)
K4—C4iii3.274 (4)K3—N13.081 (4)
K4—C3ii3.317 (4)K3—C13.093 (4)
K4—C7ii3.362 (4)K3—C33.125 (4)
K1—N4iii2.783 (4)K3—N33.140 (4)
K1—O32.888 (10)K3—C23.339 (4)
K1—N22.900 (4)K3—N23.344 (5)
K1—O22.921 (10)N3—C31.140 (6)
K1—N7iv3.031 (4)N4—C41.161 (6)
K1—N6i3.046 (4)N1—C11.174 (5)
K1—N1i3.051 (4)N2—C21.167 (6)
K1—N6iv3.051 (4)N5—C51.161 (6)
K1—O13.075 (6)C6—N61.154 (5)
K1—C6i3.200 (4)C7—N71.154 (6)
K1—C1i3.210 (4)O1—K2viii3.383 (6)
K1—C7iv3.362 (4)O1—H10.89 (2)
K2—N3v2.819 (4)O1—H20.89 (2)
K2—N5vi2.882 (5)O3—O3x1.005 (18)
C2—Mo1—C574.20 (16)C5—K2—C4vii129.62 (10)
C2—Mo1—C175.73 (16)N3v—K2—C7vii88.06 (10)
C5—Mo1—C1126.45 (17)N5vi—K2—C7vii86.38 (12)
C2—Mo1—C4125.11 (16)N4vii—K2—C7vii68.44 (11)
C5—Mo1—C475.08 (17)N7vii—K2—C7vii19.92 (11)
C1—Mo1—C4155.91 (15)C4—K2—C7vii95.04 (10)
C2—Mo1—C6120.52 (17)N4—K2—C7vii74.03 (10)
C5—Mo1—C675.93 (16)C6—K2—C7vii142.50 (11)
C1—Mo1—C682.82 (14)N6—K2—C7vii143.29 (11)
C4—Mo1—C693.98 (14)N5—K2—C7vii133.68 (11)
C2—Mo1—C377.55 (16)C5—K2—C7vii135.26 (11)
C5—Mo1—C3122.98 (16)C4vii—K2—C7vii48.32 (10)
C1—Mo1—C391.60 (14)O2—K3—N6viii121.8 (2)
C4—Mo1—C382.69 (14)O2—K3—O342.0 (3)
C6—Mo1—C3158.53 (16)N6viii—K3—O380.6 (2)
C2—Mo1—C7144.39 (15)O2—K3—O175.4 (3)
C5—Mo1—C7141.38 (15)N6viii—K3—O174.07 (13)
C1—Mo1—C777.75 (15)O3—K3—O151.2 (3)
C4—Mo1—C778.21 (15)O2—K3—N1ix144.9 (2)
C6—Mo1—C778.68 (15)N6viii—K3—N1ix77.83 (11)
C3—Mo1—C779.88 (14)O3—K3—N1ix148.6 (2)
C2—Mo1—K2125.94 (11)O1—K3—N1ix139.68 (15)
C5—Mo1—K251.79 (11)O2—K3—N7ix66.5 (2)
C1—Mo1—K2132.54 (9)N6viii—K3—N7ix88.30 (11)
C4—Mo1—K248.64 (10)O3—K3—N7ix69.5 (3)
C6—Mo1—K249.76 (10)O1—K3—N7ix119.81 (15)
C3—Mo1—K2131.31 (10)N1ix—K3—N7ix87.22 (11)
C7—Mo1—K289.59 (10)O2—K3—N176.9 (2)
C2—Mo1—K354.13 (11)N6viii—K3—N1151.78 (12)
C5—Mo1—K3128.27 (11)O3—K3—N1118.3 (3)
C1—Mo1—K347.57 (9)O1—K3—N1133.85 (13)
C4—Mo1—K3131.21 (10)N1ix—K3—N175.93 (11)
C6—Mo1—K3130.36 (11)N7ix—K3—N180.28 (9)
C3—Mo1—K348.53 (10)O2—K3—C183.5 (2)
C7—Mo1—K390.34 (10)N6viii—K3—C1154.61 (11)
K2—Mo1—K3179.844 (19)O3—K3—C1124.7 (2)
N1i—K4—N274.36 (12)O1—K3—C1118.24 (13)
N1i—K4—N3ii79.64 (10)N1ix—K3—C179.58 (10)
N2—K4—N3ii136.55 (11)N7ix—K3—C1102.07 (10)
N1i—K4—N3iii155.68 (12)N1—K3—C121.93 (10)
N2—K4—N3iii128.12 (12)O2—K3—C3118.1 (2)
N3ii—K4—N3iii76.83 (11)N6viii—K3—C3104.25 (11)
N1i—K4—N7ii83.60 (11)O3—K3—C3129.1 (3)
N2—K4—N7ii120.85 (12)O1—K3—C380.92 (15)
N3ii—K4—N7ii89.44 (11)N1ix—K3—C378.63 (10)
N3iii—K4—N7ii90.10 (11)N7ix—K3—C3158.45 (10)
N1i—K4—N4iii88.28 (10)N1—K3—C380.57 (10)
N2—K4—N4iii70.89 (11)C1—K3—C359.65 (10)
N3ii—K4—N4iii74.16 (11)O2—K3—N3132.2 (2)
N3iii—K4—N4iii91.13 (11)N6viii—K3—N383.31 (10)
N7ii—K4—N4iii162.80 (11)O3—K3—N3125.4 (3)
N1i—K4—N5128.70 (12)O1—K3—N374.17 (15)
N2—K4—N586.40 (12)N1ix—K3—N374.35 (10)
N3ii—K4—N5136.58 (11)N7ix—K3—N3160.97 (11)
N3iii—K4—N568.27 (11)N1—K3—N399.33 (10)
N7ii—K4—N566.26 (12)C1—K3—N379.57 (10)
N4iii—K4—N5129.74 (12)C3—K3—N320.96 (10)
N1i—K4—C3iii155.52 (11)O2—K3—C269.3 (2)
N2—K4—C3iii111.36 (12)N6viii—K3—C2137.97 (11)
N3ii—K4—C3iii80.82 (10)O3—K3—C293.7 (2)
N3iii—K4—C3iii20.96 (10)O1—K3—C270.34 (13)
N7ii—K4—C3iii110.84 (11)N1ix—K3—C2117.51 (11)
N4iii—K4—C3iii72.25 (10)N7ix—K3—C2128.83 (11)
N5—K4—C3iii75.78 (11)N1—K3—C265.60 (11)
N1i—K4—C288.58 (11)C1—K3—C247.92 (11)
N2—K4—C220.85 (11)C3—K3—C248.92 (11)
N3ii—K4—C2157.13 (11)N3—K3—C266.16 (10)
N3iii—K4—C2115.65 (11)O2—K3—N254.2 (2)
N7ii—K4—C2108.80 (11)N6viii—K3—N2130.22 (11)
N4iii—K4—C286.05 (11)O3—K3—N273.6 (2)
N5—K4—C265.55 (11)O1—K3—N256.52 (13)
C3iii—K4—C2104.29 (11)N1ix—K3—N2137.62 (10)
N1i—K4—C4iii109.02 (10)N7ix—K3—N2119.73 (11)
N2—K4—C4iii77.45 (11)N1—K3—N277.35 (10)
N3ii—K4—C4iii78.98 (10)C1—K3—N263.97 (10)
N3iii—K4—C4iii72.38 (10)C3—K3—N264.95 (10)
N7ii—K4—C4iii160.72 (11)N3—K3—N278.27 (10)
N4iii—K4—C4iii20.75 (10)C2—K3—N220.11 (10)
N5—K4—C4iii112.42 (12)C3—N3—K2viii154.0 (3)
C3iii—K4—C4iii52.41 (10)C3—N3—K4xi98.7 (3)
C2—K4—C4iii86.57 (11)K2viii—N3—K4xi106.90 (12)
N1i—K4—C3ii77.63 (10)C3—N3—K4iii89.6 (3)
N2—K4—C3ii148.30 (11)K2viii—N3—K4iii89.18 (11)
N3ii—K4—C3ii19.86 (10)K4xi—N3—K4iii103.17 (11)
N3iii—K4—C3ii78.16 (9)C3—N3—K378.8 (3)
N7ii—K4—C3ii69.59 (10)K2viii—N3—K392.09 (10)
N4iii—K4—C3ii93.89 (10)K4xi—N3—K399.76 (11)
N5—K4—C3ii123.26 (11)K4iii—N3—K3155.59 (14)
C3iii—K4—C3ii88.77 (10)C4—N4—K1iii151.2 (3)
C2—K4—C3ii166.20 (10)C4—N4—K2vii99.5 (3)
C4iii—K4—C3ii98.25 (10)K1iii—N4—K2vii109.07 (13)
N1i—K4—C7ii80.29 (10)C4—N4—K4iii87.2 (3)
N2—K4—C7ii136.66 (12)K1iii—N4—K4iii84.27 (10)
N3ii—K4—C7ii69.42 (10)K2vii—N4—K4iii99.88 (11)
N3iii—K4—C7ii85.77 (10)C4—N4—K278.1 (3)
N7ii—K4—C7ii20.02 (10)K1iii—N4—K297.92 (11)
N4iii—K4—C7ii143.19 (10)K2vii—N4—K2104.52 (11)
N5—K4—C7ii82.72 (12)K4iii—N4—K2153.20 (14)
C3iii—K4—C7ii106.31 (10)C1—N1—K4i154.3 (3)
C2—K4—C7ii128.06 (11)C1—N1—K3ix99.3 (3)
C4iii—K4—C7ii144.98 (11)K4i—N1—K3ix106.16 (12)
C3ii—K4—C7ii49.57 (10)C1—N1—K1i86.9 (3)
N4iii—K1—O3126.5 (3)K4i—N1—K1i84.65 (10)
N4iii—K1—N275.70 (12)K3ix—N1—K1i102.10 (11)
O3—K1—N279.8 (2)C1—N1—K379.6 (3)
N4iii—K1—O2132.7 (2)K4i—N1—K397.05 (11)
O3—K1—O240.3 (3)K3ix—N1—K3104.07 (11)
N2—K1—O258.2 (2)K1i—N1—K3152.14 (14)
N4iii—K1—N7iv83.94 (11)C2—N2—K497.4 (3)
O3—K1—N7iv72.6 (3)C2—N2—K1176.0 (4)
N2—K1—N7iv124.93 (12)K4—N2—K186.55 (12)
O2—K1—N7iv112.8 (2)C2—N2—K379.7 (3)
N4iii—K1—N6i151.13 (12)K4—N2—K3176.65 (16)
O3—K1—N6i73.8 (3)K1—N2—K396.37 (12)
N2—K1—N6i132.09 (12)C5—N5—K2vi176.1 (4)
O2—K1—N6i76.2 (2)C5—N5—K491.7 (3)
N7iv—K1—N6i83.89 (11)K2vi—N5—K485.04 (11)
N4iii—K1—N1i90.63 (10)C5—N5—K281.6 (3)
O3—K1—N1i124.6 (3)K2vi—N5—K2101.74 (12)
N2—K1—N1i71.04 (12)K4—N5—K2173.03 (16)
O2—K1—N1i84.5 (2)N6—C6—Mo1178.8 (4)
N7iv—K1—N1i160.62 (11)N6—C6—K281.0 (3)
N6i—K1—N1i92.27 (10)Mo1—C6—K298.68 (14)
N4iii—K1—N6iv79.25 (11)N6—C6—K1i71.9 (3)
O3—K1—N6iv143.8 (2)Mo1—C6—K1i108.80 (14)
N2—K1—N6iv135.46 (11)K2—C6—K1i146.00 (14)
O2—K1—N6iv141.7 (2)N6—C6—K1xii62.6 (3)
N7iv—K1—N6iv87.65 (11)Mo1—C6—K1xii116.23 (15)
N6i—K1—N6iv74.18 (11)K2—C6—K1xii90.47 (10)
N1i—K1—N6iv73.05 (10)K1i—C6—K1xii94.81 (10)
N4iii—K1—O177.78 (15)N4—C4—Mo1178.7 (4)
O3—K1—O148.9 (3)N4—C4—K280.5 (3)
N2—K1—O159.89 (13)Mo1—C4—K2100.01 (13)
O2—K1—O170.8 (3)N4—C4—K4iii72.1 (3)
N7iv—K1—O166.03 (12)Mo1—C4—K4iii107.93 (13)
N6i—K1—O1120.18 (14)K2—C4—K4iii144.67 (13)
N1i—K1—O1130.92 (12)N4—C4—K2vii60.4 (3)
N6iv—K1—O1146.53 (13)Mo1—C4—K2vii118.33 (15)
N4iii—K1—C6i155.00 (11)K2—C4—K2vii96.36 (10)
O3—K1—C6i78.4 (3)K4iii—C4—K2vii89.15 (10)
N2—K1—C6i115.01 (12)N5—C5—Mo1174.1 (4)
O2—K1—C6i66.0 (2)N5—C5—K277.6 (3)
N7iv—K1—C6i104.87 (11)Mo1—C5—K296.91 (15)
N6i—K1—C6i21.12 (10)N5—C5—K468.2 (3)
N1i—K1—C6i73.26 (10)Mo1—C5—K4117.19 (16)
N6iv—K1—C6i77.82 (10)K2—C5—K4145.76 (14)
O1—K1—C6i127.22 (14)N1—C1—Mo1179.0 (3)
N4iii—K1—C1i112.02 (11)N1—C1—K378.5 (3)
O3—K1—C1i108.7 (3)Mo1—C1—K3101.55 (13)
N2—K1—C1i78.95 (12)N1—C1—K1i71.7 (3)
O2—K1—C1i71.3 (2)Mo1—C1—K1i108.74 (13)
N7iv—K1—C1i154.97 (11)K3—C1—K1i141.57 (14)
N6i—K1—C1i72.96 (10)N1—C1—K3ix60.7 (3)
N1i—K1—C1i21.43 (10)Mo1—C1—K3ix118.36 (15)
N6iv—K1—C1i77.16 (10)K3—C1—K3ix95.18 (10)
O1—K1—C1i134.42 (12)K1i—C1—K3ix90.83 (9)
C6i—K1—C1i52.82 (10)N3—C3—Mo1178.1 (4)
N4iii—K1—C7iv78.81 (10)N3—C3—K380.3 (3)
O3—K1—C7iv90.8 (2)Mo1—C3—K3100.21 (13)
N2—K1—C7iv139.24 (12)N3—C3—K4iii69.5 (3)
O2—K1—C7iv129.9 (2)Mo1—C3—K4iii110.74 (14)
N7iv—K1—C7iv19.95 (11)K3—C3—K4iii143.04 (14)
N6i—K1—C7iv80.85 (10)N3—C3—K4xi61.5 (3)
N1i—K1—C7iv140.67 (11)Mo1—C3—K4xi116.62 (15)
N6iv—K1—C7iv67.80 (10)K3—C3—K4xi92.56 (10)
O1—K1—C7iv84.04 (12)K4iii—C3—K4xi91.23 (10)
C6i—K1—C7iv101.40 (10)N2—C2—Mo1175.1 (4)
C1i—K1—C7iv140.79 (11)N2—C2—K461.8 (3)
N3v—K2—N5vi74.20 (12)Mo1—C2—K4123.11 (17)
N3v—K2—N4vii79.00 (11)N2—C2—K380.2 (3)
N5vi—K2—N4vii143.65 (11)Mo1—C2—K394.90 (14)
N3v—K2—N7vii92.82 (10)K4—C2—K3141.94 (14)
N5vi—K2—N7vii69.19 (12)C6—N6—K3v154.2 (3)
N4vii—K2—N7vii88.33 (11)C6—N6—K1i87.0 (3)
N3v—K2—C4154.84 (11)K3v—N6—K1i93.00 (11)
N5vi—K2—C4130.86 (12)C6—N6—K1xii97.7 (3)
N4vii—K2—C478.98 (11)K3v—N6—K1xii107.02 (12)
N7vii—K2—C498.55 (10)K1i—N6—K1xii105.82 (11)
N3v—K2—N4152.82 (11)C6—N6—K278.0 (3)
N5vi—K2—N4123.51 (12)K3v—N6—K291.82 (10)
N4vii—K2—N475.48 (11)K1i—N6—K2154.44 (14)
N7vii—K2—N477.34 (10)K1xii—N6—K296.69 (11)
C4—K2—N421.43 (10)N7—C7—Mo1178.9 (4)
N3v—K2—C6103.06 (11)N7—C7—K1xii63.6 (2)
N5vi—K2—C6131.04 (12)Mo1—C7—K1xii116.63 (15)
N4vii—K2—C678.58 (11)N7—C7—K4xi65.9 (3)
N7vii—K2—C6156.93 (10)Mo1—C7—K4xi113.90 (14)
C4—K2—C660.55 (10)K1xii—C7—K4xi129.43 (15)
N4—K2—C681.01 (10)N7—C7—K2vii66.0 (3)
N3v—K2—N682.07 (9)Mo1—C7—K2vii115.03 (15)
N5vi—K2—N6123.91 (12)K1xii—C7—K2vii83.05 (10)
N4vii—K2—N674.98 (11)K4xi—C7—K2vii74.38 (9)
N7vii—K2—N6163.17 (11)N7—C7—K3ix62.5 (3)
C4—K2—N680.61 (10)Mo1—C7—K3ix116.39 (16)
N4—K2—N6100.02 (10)K1xii—C7—K3ix77.65 (9)
C6—K2—N621.00 (10)K4xi—C7—K3ix82.09 (10)
N3v—K2—N5127.59 (12)K2vii—C7—K3ix128.45 (14)
N5vi—K2—N578.26 (12)C7—N7—K1xii96.4 (3)
N4vii—K2—N5138.08 (11)C7—N7—K3ix97.8 (3)
N7vii—K2—N5117.52 (11)K1xii—N7—K3ix88.49 (10)
C4—K2—N565.63 (11)C7—N7—K4xi94.1 (3)
N4—K2—N578.79 (11)K1xii—N7—K4xi169.07 (15)
C6—K2—N565.05 (11)K3ix—N7—K4xi93.01 (11)
N6—K2—N577.64 (11)C7—N7—K2vii94.0 (3)
N3v—K2—C5136.31 (12)K1xii—N7—K2vii93.66 (11)
N5vi—K2—C599.08 (12)K3ix—N7—K2vii167.66 (15)
N4vii—K2—C5117.27 (11)K4xi—N7—K2vii82.64 (10)
N7vii—K2—C5125.79 (11)K3—O1—K1102.27 (19)
C4—K2—C548.67 (11)K3—O1—K2viii85.71 (15)
N4—K2—C566.00 (11)K1—O1—K2viii169.2 (2)
C6—K2—C548.91 (11)K3—O1—H1133 (5)
N6—K2—C565.90 (11)K1—O1—H1109 (5)
N5—K2—C520.83 (10)K2viii—O1—H170 (5)
N3v—K2—C4vii79.86 (10)K3—O1—H2110 (4)
N5vi—K2—C4vii128.22 (11)K1—O1—H297 (5)
N4vii—K2—C4vii20.13 (10)K2viii—O1—H273 (5)
N7vii—K2—C4vii68.23 (10)H1—O1—H2100 (3)
C4—K2—C4vii83.64 (10)K3—O2—K1110.1 (4)
N4—K2—C4vii72.96 (10)O3x—O3—K3124.8 (14)
C6—K2—C4vii97.92 (10)O3x—O3—K1121.3 (14)
N6—K2—C4vii95.04 (10)K3—O3—K1109.9 (3)
N5—K2—C4vii149.11 (11)

Symmetry codes: (i) −x, −y, −z+1; (ii) x+1, y, z; (iii) −x, −y, −z; (iv) x+1, y−1, z; (v) x, y+1, z; (vi) −x, −y+1, −z; (vii) −x−1, −y+1, −z; (viii) x, y−1, z; (ix) −x−1, −y, −z+1; (x) −x, −y−1, −z+1; (xi) x−1, y, z; (xii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2189).

References

  • Arimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Am. Chem. Soc.125, 9240–9241. [PubMed]
  • Catala, L., Mathoniere, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748. [PubMed]
  • DeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA.
  • Drew, M. G. B., Mitchell, P. C. H. & Pygall, C. F. (1977). J. Chem. Soc. Dalton Trans. pp. 1071–1077.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1999). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hursthouse, M. B., Malik, K. M. A., Soares, A. M., Gibson, J. F. & Griffith, W. P. (1980). Inorg. Chim. Acta, 45, L81–L82.
  • Larionova, J., Willemin, S., Donnadieu, B., Henner, B., Guerin, C., Gillon, B. & Goujon, A. (2004). J. Phys. Chem. Solids, 65, 677–691.
  • Ohkoshi, S., Hamada, Y., Matsuda, T., Tunobuchi, Y. & Tokoro, H. (2008). Chem. Mater.20, 3048–3054.
  • Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc.129, 3084–3085. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2007). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Rossman, G. R., Tsay, F. D. & Gray, H. B. (1973). Inorg. Chem.12, 824–829.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Young, R. C. (1932). J. Am. Chem. Soc.54, 1402–1405.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography