PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2862.
Published online 2009 October 28. doi:  10.1107/S1600536809043748
PMCID: PMC2971089

Ethyl 6-amino-5-cyano-2-methyl-4-propyl-4H-pyran-3-carboxyl­ate

Abstract

The pyran ring of the title compound, C13H18N2O3, is almost planar (r.m.s. deviation = 0.059 Å). The crystal packing is stabilized by N—H(...)O and N—H(...)N hydrogen bonds.

Related literature

Ethyl 6-amino-5-cyano-2-methyl-4-propyl-4H-pyran-3-carb­ox­yl­ate and its derivatives are widely utilized as organic inter­mediates, see: Liang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2862-scheme1.jpg

Experimental

Crystal data

  • C13H18N2O3
  • M r = 250.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2862-efi1.jpg
  • a = 8.1172 (9) Å
  • b = 8.7956 (9) Å
  • c = 11.2877 (19) Å
  • α = 106.082 (12)°
  • β = 107.274 (12)°
  • γ = 103.315 (9)°
  • V = 695.20 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.25 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.65, T max = 0.87
  • 5049 measured reflections
  • 2826 independent reflections
  • 1577 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.129
  • S = 0.89
  • 2826 reflections
  • 172 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043748/bt5109sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043748/bt5109Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Zhejiang Ocean University, the People’s Hospital of Jilin Province and the Science Foundation for Young Teachers of Northeast Normal University (No. 20080305) for support.

supplementary crystallographic information

Comment

Ethyl 6-amino-5-cyano-2-methyl-4-propyl-4H-pyran-3-carboxylate and its derivatives are widely utilized as organic intermediates (Liang et al., 2009).

The pyran ring of the title compound, C13H18N2O3, is almost planar (r.m.s. deviation 0.059Å). The crystal packing is stabilized by N-H···O and N-H···N hydrogen bonds.

Experimental

A mixture of butyraldehyde (1.0 mmol), malononitrile (1.0 mmol) and acetyl acetate (1.0 mmol) was dissolved in 5 mL dimethylformamide and catalytic amount of piperidine (0.2 mmol) was added at room temperature under stirring. After 2h, the reaction mixture was poured into water and extracted with CH2Cl2. The combined organic phase was washed with water, dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified by silica column chromatography. Yield: 87%. Pure product was dissolved in a mixture of petroleum ether. The single-crystals were obtained by slow evaporation of the solvents.

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93-0.98Å) and refined as riding, with Uiso(H)=1.2Ueq(C) or Uiso(H)=1.5Ueq(Cmethyl). The H atoms bonded to N were freely refined.

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C13H18N2O3Z = 2
Mr = 250.15F(000) = 268
Triclinic, P1Dx = 1.195 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1172 (9) ÅCell parameters from 2826 reflections
b = 8.7956 (9) Åθ = 3.0–26.4°
c = 11.2877 (19) ŵ = 0.09 mm1
α = 106.082 (12)°T = 293 K
β = 107.274 (12)°Block, colorless
γ = 103.315 (9)°0.25 × 0.23 × 0.20 mm
V = 695.20 (19) Å3

Data collection

Bruker APEX CCD area-detector diffractometer2826 independent reflections
Radiation source: fine-focus sealed tube1577 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→10
Tmin = 0.65, Tmax = 0.87k = −10→10
5049 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.89w = 1/[σ2(Fo2) + (0.0757P)2] where P = (Fo2 + 2Fc2)/3
2826 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.2429 (2)−0.09571 (19)0.63342 (17)0.0444 (4)
C2−0.1346 (2)−0.18666 (19)0.61071 (16)0.0428 (4)
C3−0.2165 (2)−0.3640 (2)0.55184 (18)0.0507 (5)
C40.0703 (2)−0.10825 (19)0.65363 (16)0.0416 (4)
H40.1012−0.15300.57650.050*
C50.1778 (2)−0.1557 (2)0.76684 (17)0.0513 (5)
H5A0.1418−0.27740.73620.062*
H5B0.3075−0.11170.78500.062*
C60.1500 (3)−0.0922 (3)0.8948 (2)0.0716 (6)
H6A0.0195−0.12710.87560.086*
H6B0.19760.02980.93050.086*
C70.2423 (4)−0.1545 (3)1.0004 (2)0.1038 (9)
H7A0.2186−0.11021.07910.156*
H7B0.3723−0.11751.02230.156*
H7C0.1945−0.27530.96660.156*
C80.0021 (2)0.1608 (2)0.70345 (17)0.0446 (4)
C90.1207 (2)0.08115 (19)0.69043 (16)0.0404 (4)
C100.0223 (3)0.3431 (2)0.7354 (2)0.0670 (6)
H10A−0.08680.35240.67920.101*
H10B0.12580.39890.71990.101*
H10C0.04090.39470.82740.101*
C110.3091 (2)0.1666 (2)0.70545 (18)0.0466 (4)
C120.5617 (3)0.4184 (3)0.7863 (2)0.0737 (6)
H12A0.56460.40160.69840.088*
H12B0.64910.37490.83260.088*
C130.6091 (4)0.5982 (3)0.8618 (3)0.1117 (9)
H13A0.73000.65840.87130.168*
H13B0.60610.61350.94860.168*
H13C0.52220.64030.81490.168*
N2−0.4192 (2)−0.1503 (2)0.61418 (18)0.0606 (5)
N1−0.2822 (2)−0.5075 (2)0.50412 (19)0.0763 (6)
O3−0.17565 (15)0.07590 (13)0.68500 (12)0.0530 (3)
O10.39733 (18)0.09129 (16)0.65942 (14)0.0694 (4)
O20.37809 (16)0.33123 (15)0.77399 (14)0.0612 (4)
H2A−0.472 (2)−0.083 (2)0.6160 (17)0.055 (5)*
H2B−0.485 (3)−0.253 (3)0.585 (2)0.062 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0435 (10)0.0357 (9)0.0503 (11)0.0118 (8)0.0178 (8)0.0123 (8)
C20.0427 (10)0.0356 (9)0.0466 (10)0.0149 (8)0.0133 (8)0.0131 (8)
C30.0410 (10)0.0451 (11)0.0606 (12)0.0174 (9)0.0140 (9)0.0157 (9)
C40.0439 (10)0.0366 (9)0.0449 (10)0.0182 (8)0.0168 (8)0.0129 (7)
C50.0490 (11)0.0426 (10)0.0593 (12)0.0179 (8)0.0138 (9)0.0205 (9)
C60.0846 (16)0.0705 (14)0.0584 (13)0.0299 (12)0.0213 (11)0.0261 (11)
C70.130 (2)0.109 (2)0.0662 (15)0.0379 (18)0.0184 (15)0.0482 (16)
C80.0421 (10)0.0380 (9)0.0533 (11)0.0135 (8)0.0195 (8)0.0152 (8)
C90.0412 (10)0.0380 (9)0.0441 (10)0.0155 (8)0.0161 (8)0.0173 (8)
C100.0593 (13)0.0393 (10)0.1052 (17)0.0212 (9)0.0362 (12)0.0222 (11)
C110.0453 (10)0.0486 (11)0.0552 (11)0.0215 (9)0.0197 (9)0.0281 (9)
C120.0484 (12)0.0710 (14)0.0989 (17)0.0079 (11)0.0285 (12)0.0374 (13)
C130.0887 (19)0.0724 (17)0.134 (3)−0.0179 (14)0.0439 (18)0.0169 (17)
N20.0453 (10)0.0414 (10)0.0917 (13)0.0153 (9)0.0289 (9)0.0167 (9)
N10.0583 (11)0.0403 (10)0.1089 (15)0.0124 (9)0.0212 (10)0.0126 (10)
O30.0443 (7)0.0348 (6)0.0765 (9)0.0148 (6)0.0265 (6)0.0115 (6)
O10.0578 (9)0.0646 (9)0.1057 (12)0.0336 (7)0.0447 (8)0.0355 (8)
O20.0470 (7)0.0474 (8)0.0829 (10)0.0073 (6)0.0285 (7)0.0184 (7)

Geometric parameters (Å, °)

C1—N21.329 (2)C8—C91.333 (2)
C1—C21.350 (2)C8—O31.3862 (19)
C1—O31.3638 (19)C8—C101.501 (2)
C2—C31.415 (2)C9—C111.476 (2)
C2—C41.512 (2)C10—H10A0.9600
C3—N11.145 (2)C10—H10B0.9600
C4—C91.522 (2)C10—H10C0.9600
C4—C51.540 (2)C11—O11.2122 (18)
C4—H40.9800C11—O21.326 (2)
C5—C61.502 (3)C12—O21.456 (2)
C5—H5A0.9700C12—C131.467 (3)
C5—H5B0.9700C12—H12A0.9700
C6—C71.517 (3)C12—H12B0.9700
C6—H6A0.9700C13—H13A0.9600
C6—H6B0.9700C13—H13B0.9600
C7—H7A0.9600C13—H13C0.9600
C7—H7B0.9600N2—H2A0.805 (18)
C7—H7C0.9600N2—H2B0.85 (2)
N2—C1—C2128.59 (16)C9—C8—C10130.81 (16)
N2—C1—O3110.12 (13)O3—C8—C10107.27 (12)
C2—C1—O3121.28 (15)C8—C9—C11123.41 (14)
C1—C2—C3117.85 (15)C8—C9—C4122.47 (15)
C1—C2—C4122.94 (14)C11—C9—C4114.08 (12)
C3—C2—C4119.09 (12)C8—C10—H10A109.5
N1—C3—C2179.8 (2)C8—C10—H10B109.5
C2—C4—C9109.31 (11)H10A—C10—H10B109.5
C2—C4—C5111.67 (13)C8—C10—H10C109.5
C9—C4—C5112.78 (13)H10A—C10—H10C109.5
C2—C4—H4107.6H10B—C10—H10C109.5
C9—C4—H4107.6O1—C11—O2121.58 (16)
C5—C4—H4107.6O1—C11—C9122.36 (16)
C6—C5—C4114.61 (13)O2—C11—C9116.06 (13)
C6—C5—H5A108.6O2—C12—C13107.97 (17)
C4—C5—H5A108.6O2—C12—H12A110.1
C6—C5—H5B108.6C13—C12—H12A110.1
C4—C5—H5B108.6O2—C12—H12B110.1
H5A—C5—H5B107.6C13—C12—H12B110.1
C5—C6—C7113.67 (18)H12A—C12—H12B108.4
C5—C6—H6A108.8C12—C13—H13A109.5
C7—C6—H6A108.8C12—C13—H13B109.5
C5—C6—H6B108.8H13A—C13—H13B109.5
C7—C6—H6B108.8C12—C13—H13C109.5
H6A—C6—H6B107.7H13A—C13—H13C109.5
C6—C7—H7A109.5H13B—C13—H13C109.5
C6—C7—H7B109.5C1—N2—H2A117.1 (13)
H7A—C7—H7B109.5C1—N2—H2B124.7 (13)
C6—C7—H7C109.5H2A—N2—H2B117.0 (18)
H7A—C7—H7C109.5C1—O3—C8120.17 (11)
H7B—C7—H7C109.5C11—O2—C12116.81 (13)
C9—C8—O3121.91 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.805 (18)2.088 (19)2.881 (2)168.2 (17)
N2—H2B···N1ii0.85 (2)2.21 (2)3.035 (3)164.4 (17)

Symmetry codes: (i) x−1, y, z; (ii) −x−1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5109).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3538. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography