PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2681.
Published online 2009 October 10. doi:  10.1107/S1600536809040033
PMCID: PMC2971087

4-Nitro­phenyl 4-bromo­benzene­sulfonate

Abstract

In the title mol­ecule, C12H8BrNO5S, the dihedral angle between the two benzene rings is 30.02 (7)°. The crystal structure is stabilized by weak C—H(...)O inter­actions.

Related literature

For a detailed account of the mol­ecular and supra­molecular architectures of aromatic sulfonates, see: Vembu et al. (2007 [triangle]) and references cited therein. For the uses of aromatic sulfonates, see: Alford et al. (1991 [triangle]); Jiang et al. (1990 [triangle]); Narayanan & Krakow (1983 [triangle]); Spungin et al. (1992 [triangle]); Tharakan et al. (1992 [triangle]); Yachi et al. (1989 [triangle]). For C—H(...)O inter­actions, see: Desiraju & Steiner (1999 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2681-scheme1.jpg

Experimental

Crystal data

  • C12H8BrNO5S
  • M r = 358.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2681-efi1.jpg
  • a = 13.150 (2) Å
  • b = 8.3387 (10) Å
  • c = 12.292 (2) Å
  • β = 105.932 (7)°
  • V = 1296.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.35 mm−1
  • T = 90 K
  • 0.20 × 0.15 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.554, T max = 0.799
  • 35540 measured reflections
  • 4458 independent reflections
  • 3518 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.085
  • S = 1.04
  • 4458 reflections
  • 213 parameters
  • All H-atom parameters refined
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.81 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040033/lh2921sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040033/lh2921Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

supplementary crystallographic information

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of (I) is shown in Fig. 1. The S—C, S—O and S=O bond lengths are comparable with those found in related structures which have been previously reported by us (Vembu et al. 2007 and references cited therein).

The C4–S–O9–C10 torsion angle of -86.5 (2)° corresponds to -synclinal conformation; as expected the dihedral angle between the mean planes of the nitrophenyl and bromobenzene rings of 30.02 (7)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein)

The crystal structure of (I) is stabilized by weak intermolecular C—H···O interactions (Desiraju et al., 1999) (Table 1, Fig. 2). Two symmetry related C15–H15···O7ii interactions generate a binary motif of graph set, R22(12) (Bernstein et al., 1995).

Experimental

4-Bromobenzenesulfonyl chloride (10 mmol), dissolved in acetone (10 ml), was added dropwise to 4-Nitrophenol (10 mmol) in aqueous NaOH (8 ml, 5%) with constant stirring. The precipitate (6.5 mmol, yield 65%) was filtered and recrystallized from aqueous ethanol.

Refinement

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined.

Figures

Fig. 1.
The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius
Fig. 2.
The molecular packing viewed down the b-axis. Dashed lines represent the weak C—H···O interactions within the lattice.

Crystal data

C12H8BrNO5SF(000) = 712
Mr = 358.16Dx = 1.836 Mg m3
Monoclinic, P21/cMelting point: 376 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.150 (2) ÅCell parameters from 4455 reflections
b = 8.3387 (10) Åθ = 2.5–32.6°
c = 12.292 (2) ŵ = 3.35 mm1
β = 105.932 (7)°T = 90 K
V = 1296.1 (3) Å3Plate, colorless
Z = 40.20 × 0.15 × 0.07 mm

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler4458 independent reflections
Radiation source: fine-focus sealed tube3518 reflections with I > 2σ(I)
graphiteRint = 0.024
ω scans with κ offsetsθmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)h = −19→19
Tmin = 0.554, Tmax = 0.799k = −12→12
35540 measured reflectionsl = −17→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085All H-atom parameters refined
S = 1.03w = 1/[σ2(Fo2) + (0.0315P)2 + 2.0753P] where P = (Fo2 + 2Fc2)/3
4458 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.81 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.421887 (17)0.40490 (3)0.26901 (2)0.02131 (7)
S0.78218 (4)0.39271 (6)0.01144 (4)0.01524 (10)
C10.52731 (16)0.3985 (3)0.19030 (18)0.0161 (4)
C20.51138 (17)0.3089 (3)0.09190 (19)0.0190 (4)
C30.59099 (17)0.3057 (3)0.03702 (18)0.0182 (4)
C40.68192 (16)0.3964 (3)0.08048 (17)0.0150 (4)
C50.69638 (16)0.4885 (3)0.17766 (18)0.0162 (4)
C60.61882 (17)0.4870 (3)0.23466 (18)0.0172 (4)
O70.83334 (13)0.5453 (2)0.02325 (14)0.0205 (3)
O80.74442 (13)0.3181 (2)−0.09633 (13)0.0219 (3)
O90.86612 (12)0.26386 (18)0.08300 (13)0.0166 (3)
C100.94553 (16)0.3146 (2)0.17970 (17)0.0150 (4)
C110.92572 (16)0.3055 (3)0.28444 (18)0.0169 (4)
C121.00721 (17)0.3432 (3)0.37986 (18)0.0170 (4)
C131.10505 (16)0.3843 (2)0.36629 (18)0.0156 (4)
C141.12437 (16)0.3955 (3)0.26150 (19)0.0180 (4)
C151.04210 (17)0.3612 (3)0.16568 (19)0.0178 (4)
N161.19300 (15)0.4124 (2)0.46863 (16)0.0184 (3)
O171.17261 (14)0.4151 (2)0.56006 (13)0.0234 (3)
O181.28217 (13)0.4302 (2)0.45684 (15)0.0256 (4)
H20.449 (2)0.245 (4)0.062 (2)0.024 (7)*
H30.582 (2)0.249 (3)−0.029 (2)0.020 (7)*
H50.758 (2)0.552 (3)0.205 (2)0.019 (7)*
H60.627 (2)0.542 (3)0.302 (2)0.018 (7)*
H110.858 (2)0.274 (4)0.291 (2)0.028 (8)*
H120.994 (2)0.340 (3)0.452 (2)0.021 (7)*
H141.188 (2)0.425 (3)0.254 (2)0.022 (7)*
H151.053 (2)0.367 (4)0.090 (2)0.025 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.01653 (10)0.02210 (11)0.02718 (12)0.00233 (8)0.00914 (8)0.00332 (9)
S0.0167 (2)0.0152 (2)0.0142 (2)0.00039 (18)0.00489 (17)0.00036 (18)
C10.0145 (8)0.0160 (9)0.0190 (9)0.0025 (7)0.0067 (7)0.0034 (8)
C20.0158 (9)0.0182 (10)0.0211 (10)−0.0028 (8)0.0017 (8)0.0007 (8)
C30.0194 (10)0.0171 (10)0.0162 (9)−0.0019 (8)0.0019 (7)−0.0031 (8)
C40.0148 (8)0.0161 (9)0.0145 (9)0.0012 (7)0.0045 (7)0.0014 (7)
C50.0154 (9)0.0139 (9)0.0190 (10)−0.0005 (7)0.0042 (7)−0.0018 (7)
C60.0180 (9)0.0164 (10)0.0163 (9)0.0005 (8)0.0034 (7)−0.0015 (8)
O70.0228 (8)0.0173 (7)0.0239 (8)−0.0018 (6)0.0106 (6)0.0024 (6)
O80.0229 (8)0.0266 (9)0.0164 (7)0.0016 (6)0.0056 (6)−0.0027 (6)
O90.0157 (7)0.0138 (7)0.0191 (7)−0.0006 (5)0.0029 (5)−0.0023 (5)
C100.0156 (9)0.0127 (9)0.0164 (9)−0.0004 (7)0.0037 (7)−0.0001 (7)
C110.0150 (9)0.0167 (9)0.0204 (10)0.0005 (8)0.0070 (8)0.0037 (8)
C120.0183 (9)0.0163 (9)0.0169 (9)0.0016 (8)0.0055 (8)0.0035 (8)
C130.0150 (9)0.0137 (9)0.0172 (9)0.0014 (7)0.0028 (7)−0.0005 (7)
C140.0142 (9)0.0175 (10)0.0231 (10)−0.0008 (8)0.0065 (8)−0.0008 (8)
C150.0183 (9)0.0180 (10)0.0187 (10)−0.0013 (8)0.0076 (8)−0.0009 (8)
N160.0188 (8)0.0149 (8)0.0198 (8)0.0007 (7)0.0026 (7)0.0008 (7)
O170.0268 (8)0.0254 (9)0.0168 (7)−0.0015 (7)0.0039 (6)−0.0015 (6)
O180.0157 (7)0.0318 (10)0.0279 (9)−0.0007 (7)0.0034 (6)−0.0010 (7)

Geometric parameters (Å, °)

Br—C11.897 (2)O9—C101.414 (2)
S—O81.4239 (16)C10—C151.383 (3)
S—O71.4277 (17)C10—C111.384 (3)
S—O91.6167 (16)C11—C121.390 (3)
S—C41.753 (2)C11—H110.96 (3)
C1—C21.388 (3)C12—C131.385 (3)
C1—C61.389 (3)C12—H120.95 (3)
C2—C31.393 (3)C13—C141.383 (3)
C2—H20.96 (3)C13—N161.475 (3)
C3—C41.392 (3)C14—C151.393 (3)
C3—H30.92 (3)C14—H140.91 (3)
C4—C51.389 (3)C15—H150.98 (3)
C5—C61.387 (3)N16—O171.225 (2)
C5—H50.95 (3)N16—O181.229 (2)
C6—H60.93 (3)
O8—S—O7121.22 (10)C1—C6—H6119.2 (17)
O8—S—O9103.14 (9)C10—O9—S119.66 (13)
O7—S—O9107.73 (9)C15—C10—C11123.02 (19)
O8—S—C4109.96 (10)C15—C10—O9118.07 (18)
O7—S—C4109.35 (10)C11—C10—O9118.77 (18)
O9—S—C4103.88 (9)C10—C11—C12118.31 (19)
C2—C1—C6122.4 (2)C10—C11—H11120.7 (18)
C2—C1—Br120.21 (16)C12—C11—H11121.0 (18)
C6—C1—Br117.42 (16)C13—C12—C11118.7 (2)
C1—C2—C3118.6 (2)C13—C12—H12122.0 (17)
C1—C2—H2122.1 (17)C11—C12—H12119.2 (17)
C3—C2—H2119.2 (17)C14—C13—C12122.90 (19)
C4—C3—C2119.0 (2)C14—C13—N16118.82 (18)
C4—C3—H3120.2 (16)C12—C13—N16118.25 (19)
C2—C3—H3120.8 (16)C13—C14—C15118.37 (19)
C5—C4—C3122.1 (2)C13—C14—H14121.6 (18)
C5—C4—S118.84 (16)C15—C14—H14120.1 (18)
C3—C4—S119.07 (16)C10—C15—C14118.6 (2)
C6—C5—C4118.91 (19)C10—C15—H15120.4 (17)
C6—C5—H5120.2 (17)C14—C15—H15120.9 (17)
C4—C5—H5120.9 (17)O17—N16—O18124.18 (19)
C5—C6—C1119.0 (2)O17—N16—C13117.87 (18)
C5—C6—H6121.8 (17)O18—N16—C13117.95 (18)
C6—C1—C2—C31.2 (3)C4—S—O9—C10−86.54 (16)
Br—C1—C2—C3−179.34 (16)S—O9—C10—C15−91.9 (2)
C1—C2—C3—C4−2.1 (3)S—O9—C10—C1192.2 (2)
C2—C3—C4—C50.8 (3)C15—C10—C11—C12−0.8 (3)
C2—C3—C4—S−179.91 (17)O9—C10—C11—C12174.83 (19)
O8—S—C4—C5−168.82 (17)C10—C11—C12—C13−1.5 (3)
O7—S—C4—C5−33.4 (2)C11—C12—C13—C142.5 (3)
O9—S—C4—C581.36 (18)C11—C12—C13—N16−175.55 (19)
O8—S—C4—C311.9 (2)C12—C13—C14—C15−1.1 (3)
O7—S—C4—C3147.24 (17)N16—C13—C14—C15176.93 (19)
O9—S—C4—C3−97.96 (18)C11—C10—C15—C142.2 (3)
C3—C4—C5—C61.6 (3)O9—C10—C15—C14−173.47 (19)
S—C4—C5—C6−177.71 (16)C13—C14—C15—C10−1.2 (3)
C4—C5—C6—C1−2.5 (3)C14—C13—N16—O17174.0 (2)
C2—C1—C6—C51.2 (3)C12—C13—N16—O17−7.8 (3)
Br—C1—C6—C5−178.29 (16)C14—C13—N16—O18−6.5 (3)
O8—S—O9—C10158.70 (15)C12—C13—N16—O18171.6 (2)
O7—S—O9—C1029.39 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O80.92 (3)2.55 (3)2.930 (3)105.0 (19)
C11—H11···O8i0.96 (3)2.42 (3)3.288 (3)150 (2)
C15—H15···O7ii0.98 (3)2.42 (3)3.282 (3)146 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2921).

References

  • Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611–619. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
  • Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149. [PubMed]
  • Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res.11, 2701–2716. [PMC free article] [PubMed]
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett.311, 155–160. [PubMed]
  • Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr.595, 103–111. [PubMed]
  • Vembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543.
  • Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography