PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): i76–i77.
Published online 2009 October 17. doi:  10.1107/S1600536809041105
PMCID: PMC2971082

Europium-doped barium bromide iodide

Abstract

Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932 [triangle]). Z. Kristallogr. 83, 222–282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = ±0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

Related literature

For details of crystal growth by the Bridgman technique, see: Robertson (1986 [triangle]). For structural details of isotypic compounds, see: PbCl2 (Braekken, 1932 [triangle]); EuBrI (Liao et al., 2004 [triangle]); SrBrI (Hodorowicz & Eick, 1983 [triangle]); and BaBrCl (Hodorowicz et al., 1983 [triangle]). For structural details of PbFCl compounds, see: Liebich & Nicollin (1977 [triangle]). For the structure of compounds with similar compositions by powder diffraction, see Lenus et al. (2002 [triangle]). For the luminescent properties of some Eu2+-activated barium halides, see: Schweizer (2001 [triangle]); Crawford & Brixner (1991 [triangle]); Selling et al. (2007 [triangle]); Bourret-Courchesne et al. (2009 [triangle]).

Experimental

Crystal data

  • Ba0.96Eu0.04BrI
  • M r = 344.70
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i76-efi9.jpg
  • a = 8.684 (3) Å
  • b = 5.0599 (19) Å
  • c = 10.061 (4) Å
  • V = 442.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 24.97 mm−1
  • T = 153 K
  • 0.14 × 0.09 × 0.06 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.128, T max = 0.316
  • 2609 measured reflections
  • 430 independent reflections
  • 370 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.015
  • wR(F 2) = 0.033
  • S = 1.02
  • 430 reflections
  • 21 parameters
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041105/fi2082sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041105/fi2082Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the US Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge useful discussions with Dr Stephen E. Derenzo and Dr Gregory Bizarri. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

supplementary crystallographic information

Comment

Barium mixed halides activated by Eu2+ have been extensively studied as X-ray phosphors (Schweizer, 2001; Crawford & Brixner, 1991) and scintillators for the detection of γ-rays (Selling et al., 2007). The F-based compounds of the form BaFX (X= Cl, Br, I) have a tetragonal, matlockite structure similar to PbFCl (Liebich & Nicollin, 1977). Among the other barium mixed halides, the structure of BaBrCl has been found to be the PbCl2-type (Hodorowicz et al., 1983). Lenus et al. recently solved the structures of BaBrI and BaClI from X-ray powder diffraction data in the space groups P2221 and Pbam respectively (Lenus et al., 2002). We have synthesized single crystals of Ba0.96Eu0.04BrI and present details of the structure. Eu is introduced as a dopant and substitute for Ba. The doping was not expected to change the structure of the parent material BaBrI. However, we determine the structure to have a space group Pnma, similar to that of isomorphous compounds EuBrI (Liao et al., 2004) and SrBrI (Hodorowicz & Eick, 1983), but not the structure published by Lenus et al. for powders of BaBrI (Lenus et al., 2002)

The title compound adopts the orthorhombic PbCl2 structure. All atoms occupy the fourfold special positions (4c) of the space group D162h-Pnma. They lie on the mirror planes, perpendicular to the b axis at y = (±)0.25. Each Ba/Eu cation is coordinated by 9 anions in a tricapped trigonal prismatic arrangement (Fig. 1). The anions are not equidistant from the Ba cation but present in two different positions. The smaller bromide anions occupy one of the anionic positions at distances between 3.26 and 3.30 Å. The larger iodide anions occupy the second anionic position (distances 3.62 - 3.71 Å), giving a completely ordered structure for the anions. The same ordering has been observed in isomorphous compounds EuBrI (Liao et al., 2004) and SrBrI (Hodorowicz & Eick, 1983).

The Eu content of 4% has been determined from the refinement of the structure. The presence of divalent Eu is also confirmed by measuring the emission curve under X-ray excitation. The characteristic 4f65 d1 4f7transition of Eu2+ was observed. A detailed study of the luminescent properties is currently underway and will be presented in a future publication (Bourret-Courchesne et al., 2009).

Experimental

Single crystals with the composition Ba0.96Eu0.04BrI were grown by the vertical Bridgman techniques. BaBr2, BaI2, EuBr2 and EuI2 were obtained commerically, mixed in the molar ratio 0.48: 0.48: 0.02: 0.02 and sealed in a quartz ampoule under a dynamic vacuum of 1.10 –6 Torr. The sealed ampoule, about 1 cm in diameter, was heated in a 24 zone Mellen furnace to a temperature of 1123 K and directionally cooled to provide a growth rate of 1 mm/hour. The reactants and products are moisture-sensitive and all manipulations were carried out inside an Argon-filled glove box. The crystal obtained is colorless.

Refinement

The doping of Eu(ii) on the Ba(ii) site was modeled with a fractional Eu atom fixed in the same location and with the same thermal parameters as the Ba(ii) atom. The relative occupancy factor refined to 0.963 (13) Ba, 0.037 (13) Eu.

Figures

Fig. 1.
Arrangement of anions around each Ba atom. The displacement ellipsoids are given at 50% probability. The symmetry codes are: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z; (iii) -x + 3/2, -y + 1, z + 1/2; (iv) -x + 3/2, -y, z + 1/2; (v) x, y + 1, z; (vi) ...

Crystal data

Ba0.96Eu0.04BrIF(000) = 576.7
Mr = 344.70Dx = 5.179 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1548 reflections
a = 8.684 (3) Åθ = 4.5–25.4°
b = 5.0599 (19) ŵ = 24.97 mm1
c = 10.061 (4) ÅT = 153 K
V = 442.1 (3) Å3Block, colourless
Z = 40.14 × 0.09 × 0.06 mm

Data collection

Bruker SMART 1000 CCD diffractometer430 independent reflections
Radiation source: fine-focus sealed tube370 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 3.1°
[var phi] and ω scansh = −9→10
Absorption correction: multi-scan (Blessing, 1995)k = −6→5
Tmin = 0.128, Tmax = 0.316l = −11→11
2609 measured reflections

Refinement

Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.033Δρmax = 0.89 e Å3
S = 1.01Δρmin = −0.78 e Å3
430 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 parametersExtinction coefficient: 0.0151 (5)
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The doping of Eu(ii) on the Ba(ii) site was modeled with a fractional Eu atom fixed in the same location and with the same thermal parameters as the Ba(ii) atom. The relative occupancy factor refined to 0.963 (13) Ba, 0.037 (13) Eu.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
I10.52804 (5)0.25000.16976 (4)0.01285 (18)
Ba10.76955 (4)0.2500−0.12472 (4)0.01213 (17)0.963 (13)
Eu10.76955 (4)0.2500−0.12472 (4)0.01213 (17)0.037 (13)
Br10.85573 (8)−0.25000.06634 (6)0.0107 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0119 (3)0.0139 (3)0.0128 (2)0.0000.00011 (16)0.000
Ba10.0110 (3)0.0126 (3)0.0128 (2)0.000−0.00069 (15)0.000
Eu10.0110 (3)0.0126 (3)0.0128 (2)0.000−0.00069 (15)0.000
Br10.0096 (4)0.0119 (5)0.0105 (3)0.000−0.0008 (2)0.000

Geometric parameters (Å, °)

I1—Ba13.6299 (11)Ba1—Br1vii3.3065 (14)
I1—Ba1i3.6448 (10)Ba1—I1i3.6448 (10)
I1—Ba1ii3.6448 (10)Ba1—I1ii3.6448 (10)
I1—Ba1iii3.7101 (9)Ba1—I1vi3.7101 (9)
I1—Ba1iv3.7101 (9)Ba1—I1viii3.7101 (9)
Ba1—Br1v3.2643 (10)Br1—Ba1ix3.2643 (10)
Ba1—Br13.2643 (10)Br1—Ba1iv3.2930 (13)
Ba1—Br1vi3.2931 (13)Br1—Ba1vii3.3065 (14)
Ba1—I1—Ba1i107.950 (19)Br1—Ba1—I1ii140.69 (2)
Ba1—I1—Ba1ii107.950 (19)Br1vi—Ba1—I1ii69.416 (14)
Ba1i—I1—Ba1ii87.92 (3)Br1vii—Ba1—I1ii136.041 (16)
Ba1—I1—Ba1iii100.44 (2)I1—Ba1—I1ii72.051 (19)
Ba1i—I1—Ba1iii151.463 (16)I1i—Ba1—I1ii87.92 (3)
Ba1ii—I1—Ba1iii86.09 (3)Br1v—Ba1—I1vi138.42 (2)
Ba1—I1—Ba1iv100.44 (2)Br1—Ba1—I1vi72.00 (3)
Ba1i—I1—Ba1iv86.09 (3)Br1vi—Ba1—I1vi68.31 (2)
Ba1ii—I1—Ba1iv151.463 (16)Br1vii—Ba1—I1vi68.457 (18)
Ba1iii—I1—Ba1iv85.99 (3)I1—Ba1—I1vi136.767 (14)
Br1v—Ba1—Br1101.62 (3)I1i—Ba1—I1vi78.07 (2)
Br1v—Ba1—Br1vi129.163 (17)I1ii—Ba1—I1vi137.726 (19)
Br1—Ba1—Br1vi129.163 (17)Br1v—Ba1—I1viii72.00 (3)
Br1v—Ba1—Br1vii70.719 (16)Br1—Ba1—I1viii138.42 (2)
Br1—Ba1—Br1vii70.718 (16)Br1vi—Ba1—I1viii68.31 (2)
Br1vi—Ba1—Br1vii119.523 (18)Br1vii—Ba1—I1viii68.457 (18)
Br1v—Ba1—I169.62 (2)I1—Ba1—I1viii136.767 (14)
Br1—Ba1—I169.62 (2)I1i—Ba1—I1viii137.726 (19)
Br1vi—Ba1—I1125.42 (3)I1ii—Ba1—I1viii78.07 (2)
Br1vii—Ba1—I1115.06 (2)I1vi—Ba1—I1viii85.99 (3)
Br1v—Ba1—I1i140.69 (2)Ba1—Br1—Ba1ix101.62 (3)
Br1—Ba1—I1i72.41 (2)Ba1ix—Br1—Ba1iv118.69 (2)
Br1vi—Ba1—I1i69.416 (14)Ba1—Br1—Ba1vii109.282 (16)
Br1vii—Ba1—I1i136.041 (16)Ba1ix—Br1—Ba1vii109.282 (16)
I1—Ba1—I1i72.051 (19)Ba1iv—Br1—Ba1vii99.06 (2)
Br1v—Ba1—I1ii72.41 (2)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z; (iii) −x+3/2, −y+1, z+1/2; (iv) −x+3/2, −y, z+1/2; (v) x, y+1, z; (vi) −x+3/2, −y, z−1/2; (vii) −x+2, −y, −z; (viii) −x+3/2, −y+1, z−1/2; (ix) x, y−1, z.

Table 2 Selected geometric parameters (Å, °)

Ba1—I1i3.6448 (10)Ba1—I1ii3.6448 (10)
Ba1—I1vi3.7101 (9)Ba1—I1viii3.7101 (9)
Ba1—Br1vii3.3065 (14)Ba1—Br1v3.2643 (10)
Ba1—Br13.2643 (10)Ba1—Br1vi3.2931 (13)
Br1v—Ba1—Br1101.62 (3)Br1—Ba1—I1ii140.69 (2)
Br1v—Ba1—Br1vi129.163 (17)Br1vi—Ba1—I1ii69.416 (14)
Br1—Ba1—Br1vi129.163 (17)Br1vii—Ba1—I1ii136.041 (16)
Br1v—Ba1—Br1vii70.719 (16)Br1v—Ba1—I1vi.138.42 (2)
Br1—Ba1—Br1vii70.718 (16)Br1—Ba1—I169.62 (2)
Br1vi—Ba1—Br1vii119.523 (18)Br1v—Ba1—I169.62 (2)
I1i—Ba1—I1ii87.92 (3)Br1—Ba1—I1vi72.00 (3)
I1—Ba1—I1vi136.767 (14)Br1vi—Ba1—I1vi68.31 (2)
I1i—Ba1—I1vi78.07 (2)Br1vii—Ba1—I1vi68.457 (18)
I1ii—Ba1—I1vi137.726 (19)Br1vi—Ba1—I1125.42 (3)
.I1—Ba1—I1ii.72.051 (19)Br1vii—Ba1—I1115.06 (2)
Br1—Ba1—I1i72.41 (2)Br1v—Ba1—I1i140.69 (2)
I1—Ba1—I1i72.051 (19)Br1vi—Ba1—I1i69.416 (14)
Br1vii—Ba1—I1i136.041 (16)Br1v—Ba1—I1ii.72.41 (2)

Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x+3/2, -y+1, z+1/2; (iv) -x+3/2, -y, z+1/2; (v) x, y+1, z; (vi) -x+3/2, -y, z-1/2; (vii) -x+2, -y, -z; (viii) -x+3/2, -y+1, z-1/2; (ix) x, y-1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2082).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bourret-Courchesne, E. D., Gundiah, G., Hanrahan, S. M., Bizarri, G. & Derenzo, S. E. (2009). In preparation.
  • Braekken, H. (1932). Z. Kristallogr.83, 222–282.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Crawford, M. K. & Brixner, L. H. (1991). J. Lumin.4849, 37–42.
  • Hodorowicz, S. A. & Eick, H. A. (1983). J. Solid State Chem.46, 313–320.
  • Hodorowicz, S. A., Hodorowicz, E. K. & Eick, H. A. (1983). J. Solid State Chem.48, 351–356.
  • Lenus, A. J., Sornadurai, D., Rajan, K. G. & Purniah, B. (2002). Powder Diffr.17, 331–335.
  • Liao, W., Liu, X. & Dronskowski, R. (2004). Acta Cryst. E60, i69–i71.
  • Liebich, B. W. & Nicollin, D. (1977). Acta Cryst. B33, 2790–2794.
  • Robertson, J. M. (1986). Crystal Growth of Ceramics: Bridgman–Stockbarger Methods, pp. 963–964. In Encyclopedia of Materials Science and Engin­eering, edited by M. B. Bever. Oxford: Pergamon.
  • Schweizer, S. (2001). Phys. Status Solidi A, 187, 335–393.
  • Selling, J., Birowosuto, M. D., Dorenbos, P. & Schweizer, S. (2007). J. Appl. Phys.101, 034901.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography