PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1427.
Published online 2009 October 23. doi:  10.1107/S1600536809042718
PMCID: PMC2971079

(2-Acetyl­phenolato)(2,2′-bipyridine)nitratocopper(II)

Abstract

In the title compound, [Cu(C8H7O2)(NO3)(C10H8N2)], the CuII ion is five-coordinate in a distorted square-pyramidal geometry. The basal positions are occupied by two N atoms from a 2,2′-bipyridine ligand and two O atoms from the 2-acetyl­phenolate anion. The axial position is occupied by one O atom of a nitrate anion. In the bipyridine ligand, the two pyridine rings are slightly twisted by an angle of 3.5 (1)°. The crystal structure is stabilized by C—H(...)O hydrogen bonds

Related literature

For related structures, see: Bevan et al. (1963 [triangle]); Falguni et al. (1998 [triangle]); Garland et al. (1986 [triangle]); Gasque et al. (1999 [triangle]); Ming et al. (1995 [triangle]); Reki et al. (1998 [triangle]); Solans et al. (1987 [triangle]). For the synthesis, see: Plesch et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1427-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H7O2)(NO3)(C10H8N2)]
  • M r = 416.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1427-efi1.jpg
  • a = 13.4683 (12) Å
  • b = 8.3101 (8) Å
  • c = 15.5924 (15) Å
  • β = 108.583 (1)°
  • V = 1654.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.36 mm−1
  • T = 296 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.686, T max = 0.773
  • 8261 measured reflections
  • 2917 independent reflections
  • 2370 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.074
  • S = 1.03
  • 2917 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042718/ci2918sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042718/ci2918Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Sciences Foundation of China (grant No. 20877036) and the High-Level Personnel Foundation of Pingdingshan University (grant Nos. 2009001 and 2008013).

supplementary crystallographic information

Comment

Crystal structures of bis(salicylaldehydato)copper(II) (Bevan et al., 1963), (1,10-phenanthroline)(salicylaldehydato)copper(II) (Solans et al., 1987), Aqua(4,7-diphenyl-1,10-phenanthroline)(salicylaldehydato)copper(II) nitrate monohydrate (Gasque et al., 1999), (2,2'-bipyridine)(salicylaldehydato)copper(II) (Garland et al., 1986), [Cu(5-carborxysalicylaldehyde)(2,2'-bipyridine)(ClO4)] and [Cu(5-carborxysalicylaldehyde)(2,2'-bipyridine)(2H2O)] (Reki et al., 1998), [Cu(salicylaldehyde)(1,10-phenanthroline)(ClO4)]2 (Ming et al., 1995). We report here the crystal structure of the title CuII complex.

In the title compound, the CuII ion is in a distorted square-pyramidal geometry (Fig. 1 and Table 1). The four basal positions are occupied by two N donor atoms from a 2,2'-bipyridine ligand and two O atoms from the 2-acetylphenolate anion. The axial position is occupied by one O atom of a nitrate anion. The Cu1 atom is displaced from the O1/O2/N1/N2 basal plane toward the O3 atom by 0.1472 (3) Å. In the pipyridine ligand, the two pyridine rings are twisted slightly by an angle of 3.5 (1)°. The N1- and N2-pyridine rings form dihedral angles of 16.2 (1) and 15.6 (1)°, respectively, with the benzene ring.

The crystal structure is stabilized by C—H···O hydrogen bonds (Table 2).

Experimental

The crystal used in this structure determination was obtained adventitiously from an attempted preparation of a copper(II)-Schiff base complex. It was synthesized as described in the literature (Plesch et al., 1997). 2-Hydroxyacetophenone (1.00 mmol) in methanol (10 ml) was added dropwise to a soltion of beta-alaine (1.00 mmol) and potassium hydroxide (1.00 mmol) in methanol (10 ml). The yellow solution was stirred for 2 h at 333 K. The resultant mixture was added dropwise to copper(II) nitrate trihydrate (1.00 mmol) and 2,2'-bipyridine (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2 h at 333 K. The dark blue solution obtained was filtered and left for several days; dark blue crystals were formed which were filtered off, washed with water, and dried under vacuum.

Refinement

H atoms were positioned geometrically and refined as riding, with C-H = 0.93 (CH) or 0.96 Å (CH3) and Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Cu(C8H7O2)(NO3)(C10H8N2)]F(000) = 852
Mr = 416.87Dx = 1.674 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3127 reflections
a = 13.4683 (12) Åθ = 2.4–27.0°
b = 8.3101 (8) ŵ = 1.36 mm1
c = 15.5924 (15) ÅT = 296 K
β = 108.583 (1)°Block, dark green
V = 1654.2 (3) Å30.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2917 independent reflections
Radiation source: fine-focus sealed tube2370 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.686, Tmax = 0.773k = −9→7
8261 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0308P)2 + 0.9795P] where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.77943 (2)0.96237 (4)0.03090 (2)0.03038 (11)
C10.7404 (2)1.1660 (3)0.17445 (18)0.0395 (7)
H10.80401.12680.21220.047*
C20.6852 (2)1.2727 (4)0.20915 (19)0.0453 (7)
H20.71011.30380.26960.054*
C30.5919 (2)1.3328 (4)0.1521 (2)0.0473 (7)
H30.55381.40700.17350.057*
C40.5554 (2)1.2825 (3)0.06330 (19)0.0400 (7)
H40.49241.32160.02450.048*
C50.61386 (18)1.1732 (3)0.03286 (16)0.0300 (6)
C60.58213 (18)1.1050 (3)−0.05922 (16)0.0292 (6)
C70.4907 (2)1.1450 (3)−0.12742 (17)0.0377 (6)
H70.44491.2210−0.11740.045*
C80.4688 (2)1.0699 (3)−0.21052 (18)0.0418 (7)
H80.40791.0951−0.25720.050*
C90.5378 (2)0.9575 (3)−0.22366 (17)0.0376 (6)
H90.52420.9058−0.27910.045*
C100.6270 (2)0.9231 (3)−0.15362 (17)0.0352 (6)
H100.67330.8467−0.16230.042*
C110.99646 (19)0.9179 (3)0.13299 (17)0.0324 (6)
C121.08113 (19)0.9544 (3)0.21194 (18)0.0378 (6)
H121.07001.02120.25590.045*
C131.1790 (2)0.8929 (4)0.2243 (2)0.0441 (7)
H131.23340.91920.27640.053*
C141.1984 (2)0.7920 (3)0.1607 (2)0.0443 (7)
H141.26470.74820.17110.053*
C151.11933 (19)0.7571 (3)0.08252 (19)0.0384 (6)
H151.13310.69190.03920.046*
C161.01667 (18)0.8190 (3)0.06647 (17)0.0306 (6)
C170.93694 (19)0.7830 (3)−0.01883 (17)0.0309 (6)
C180.9599 (2)0.6816 (3)−0.08916 (19)0.0445 (7)
H18A0.89960.6788−0.14250.067*
H18B0.97690.5743−0.06640.067*
H18C1.01820.7265−0.10390.067*
N10.70583 (15)1.1164 (2)0.08838 (13)0.0309 (5)
N20.64940 (15)0.9956 (2)−0.07351 (13)0.0285 (5)
N30.73727 (19)0.5847 (3)0.03372 (17)0.0450 (6)
O10.90495 (13)0.9788 (2)0.12828 (12)0.0381 (4)
O20.84484 (12)0.8358 (2)−0.04004 (11)0.0332 (4)
O30.70722 (15)0.7105 (2)0.06448 (14)0.0491 (5)
O40.6824 (2)0.5290 (3)−0.03905 (18)0.0818 (8)
O50.8215 (2)0.5239 (3)0.07571 (19)0.0848 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02264 (17)0.0360 (2)0.03004 (18)0.00320 (14)0.00488 (12)−0.00188 (14)
C10.0357 (15)0.0422 (16)0.0360 (15)−0.0034 (12)0.0049 (12)−0.0056 (12)
C20.0476 (18)0.0519 (18)0.0375 (16)−0.0052 (15)0.0152 (14)−0.0125 (14)
C30.0493 (18)0.0474 (18)0.0527 (19)0.0033 (14)0.0266 (15)−0.0135 (14)
C40.0335 (15)0.0429 (16)0.0458 (17)0.0060 (13)0.0156 (13)0.0001 (13)
C50.0266 (13)0.0314 (14)0.0328 (14)0.0008 (11)0.0106 (11)0.0004 (11)
C60.0250 (13)0.0294 (13)0.0342 (14)0.0003 (11)0.0107 (11)0.0023 (11)
C70.0310 (14)0.0416 (16)0.0384 (15)0.0110 (12)0.0078 (12)0.0040 (12)
C80.0319 (15)0.0528 (19)0.0341 (15)0.0050 (13)0.0010 (12)0.0070 (13)
C90.0374 (15)0.0428 (16)0.0290 (14)0.0006 (13)0.0056 (11)−0.0032 (12)
C100.0315 (14)0.0380 (15)0.0350 (15)0.0028 (12)0.0093 (11)−0.0061 (11)
C110.0268 (14)0.0333 (14)0.0343 (14)−0.0015 (11)0.0058 (11)0.0095 (11)
C120.0303 (14)0.0448 (17)0.0347 (15)−0.0050 (13)0.0052 (11)0.0065 (12)
C130.0304 (15)0.0487 (17)0.0450 (17)−0.0069 (13)0.0006 (12)0.0133 (14)
C140.0233 (14)0.0453 (17)0.0602 (19)0.0046 (12)0.0076 (13)0.0179 (15)
C150.0283 (14)0.0352 (15)0.0513 (17)0.0021 (12)0.0122 (13)0.0079 (13)
C160.0254 (13)0.0304 (14)0.0345 (14)0.0004 (11)0.0073 (11)0.0066 (11)
C170.0285 (14)0.0269 (13)0.0382 (14)0.0010 (11)0.0120 (11)0.0064 (11)
C180.0360 (15)0.0458 (17)0.0486 (17)0.0083 (13)0.0094 (13)−0.0072 (14)
N10.0260 (11)0.0327 (12)0.0322 (12)−0.0015 (9)0.0068 (9)−0.0027 (9)
N20.0228 (11)0.0312 (12)0.0303 (12)−0.0001 (9)0.0066 (9)−0.0001 (9)
N30.0406 (14)0.0425 (15)0.0541 (16)0.0045 (12)0.0183 (12)0.0111 (12)
O10.0268 (10)0.0503 (12)0.0340 (10)0.0036 (8)0.0052 (8)−0.0058 (8)
O20.0252 (9)0.0395 (10)0.0334 (10)0.0030 (8)0.0070 (7)−0.0010 (8)
O30.0493 (12)0.0463 (12)0.0590 (13)0.0069 (10)0.0275 (10)0.0012 (10)
O40.0774 (18)0.088 (2)0.0722 (18)−0.0149 (15)0.0133 (15)−0.0282 (15)
O50.0627 (16)0.094 (2)0.091 (2)0.0436 (15)0.0165 (15)0.0261 (16)

Geometric parameters (Å, °)

Cu1—O11.8832 (17)C9—H90.93
Cu1—O21.9307 (17)C10—N21.332 (3)
Cu1—N21.9941 (19)C10—H100.93
Cu1—N11.998 (2)C11—O11.313 (3)
Cu1—O32.434 (2)C11—C161.416 (4)
C1—N11.338 (3)C11—C121.419 (3)
C1—C21.374 (4)C12—C131.369 (4)
C1—H10.93C12—H120.93
C2—C31.381 (4)C13—C141.386 (4)
C2—H20.93C13—H130.93
C3—C41.378 (4)C14—C151.370 (4)
C3—H30.93C14—H140.93
C4—C51.381 (4)C15—C161.421 (3)
C4—H40.93C15—H150.93
C5—N11.350 (3)C16—C171.450 (3)
C5—C61.474 (3)C17—O21.256 (3)
C6—N21.351 (3)C17—C181.492 (4)
C6—C71.387 (3)C18—H18A0.96
C7—C81.383 (4)C18—H18B0.96
C7—H70.93C18—H18C0.96
C8—C91.379 (4)N3—O51.224 (3)
C8—H80.93N3—O41.230 (3)
C9—C101.371 (3)N3—O31.269 (3)
O1—Cu1—O292.60 (7)O1—C11—C16125.4 (2)
O1—Cu1—N2167.80 (8)O1—C11—C12116.5 (2)
O2—Cu1—N292.87 (8)C16—C11—C12118.1 (2)
O1—Cu1—N192.18 (8)C13—C12—C11120.9 (3)
O2—Cu1—N1171.30 (8)C13—C12—H12119.5
N2—Cu1—N181.10 (8)C11—C12—H12119.5
O1—Cu1—O3101.92 (8)C12—C13—C14121.2 (3)
O2—Cu1—O386.63 (7)C12—C13—H13119.4
N2—Cu1—O389.28 (7)C14—C13—H13119.4
N1—Cu1—O399.49 (7)C15—C14—C13119.6 (3)
N1—C1—C2122.4 (3)C15—C14—H14120.2
N1—C1—H1118.8C13—C14—H14120.2
C2—C1—H1118.8C14—C15—C16121.1 (3)
C1—C2—C3118.3 (3)C14—C15—H15119.4
C1—C2—H2120.8C16—C15—H15119.4
C3—C2—H2120.8C11—C16—C15119.0 (2)
C4—C3—C2119.8 (3)C11—C16—C17122.2 (2)
C4—C3—H3120.1C15—C16—C17118.8 (2)
C2—C3—H3120.1O2—C17—C16123.4 (2)
C3—C4—C5119.0 (3)O2—C17—C18115.0 (2)
C3—C4—H4120.5C16—C17—C18121.6 (2)
C5—C4—H4120.5C17—C18—H18A109.5
N1—C5—C4121.1 (2)C17—C18—H18B109.5
N1—C5—C6114.3 (2)H18A—C18—H18B109.5
C4—C5—C6124.6 (2)C17—C18—H18C109.5
N2—C6—C7120.9 (2)H18A—C18—H18C109.5
N2—C6—C5114.7 (2)H18B—C18—H18C109.5
C7—C6—C5124.4 (2)C1—N1—C5119.3 (2)
C8—C7—C6118.8 (2)C1—N1—Cu1125.73 (18)
C8—C7—H7120.6C5—N1—Cu1114.92 (16)
C6—C7—H7120.6C10—N2—C6119.7 (2)
C9—C8—C7119.5 (2)C10—N2—Cu1125.48 (17)
C9—C8—H8120.2C6—N2—Cu1114.78 (16)
C7—C8—H8120.2O5—N3—O4121.3 (3)
C10—C9—C8118.9 (3)O5—N3—O3119.4 (3)
C10—C9—H9120.5O4—N3—O3119.2 (3)
C8—C9—H9120.5C11—O1—Cu1127.05 (16)
N2—C10—C9122.1 (2)C17—O2—Cu1129.18 (16)
N2—C10—H10118.9N3—O3—Cu1115.43 (16)
C9—C10—H10118.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.593.401 (4)146
C7—H7···O3ii0.932.513.343 (3)150

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2918).

References

  • Bevan, J. A., Graddon, D. P. & Mcconnel, J. F. (1963). Nature (London), 199, 373.
  • Bruker (2008). APEX2 and SAINT Bruker Axs Inc., Madison, Wisconsin, USA.
  • Falguni, B., Shie, M. P. & Samaresh, B. (1998). Polyhedron, 17, 2191–2197.
  • Garland, M. T., Le Marouille, J. Y. & Spodine, E. (1986). Acta Cryst. C42, 1518–1520.
  • Gasque, L., Moreno-Esparza, R., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1999). Acta Cryst. C55, 1065–1067.
  • Ming, L., Jiang, Z. Z., Zheng, X., Xiao, Z. Y. & Xiao, Y. H. (1995). Polyhedron, 14, 639–642.
  • Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem.22, 433–440.
  • Reki, S., Masaaki, O., Nobuo, F., Kazahiro, T. I., Hisashi, O. & Laurencek, T. (1998). Bull. Chem. Soc. Jpn, 71, 2365–2373.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Solans, X., Ruiz-Ramírez, L., Gasque, L. & Briansó, J. L. (1987). Acta Cryst. C43, 428–430.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography