PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2668–o2669.
Published online 2009 October 7. doi:  10.1107/S1600536809038987
PMCID: PMC2971077

1,3-Difluoro­benzene

Abstract

The weak electrostatic and dispersive forces between C(δ+)—F(δ−) and H(δ+)—C(δ−) are at the borderline of the hydrogen-bond phenomenon and are poorly directional and further deformed in the presence of other dominant inter­actions, e.g. C—H(...)π. The title compound, C6H4F2, Z′ = 2, forms one-dimensional tapes along two homodromic C—H(...)F hydrogen bonds. The one-dimensional tapes are connected into corrugated two-dimensional sheets by further bi- or trifrucated C—H(...)F hydrogen bonds. Packing in the third dimension is controlled by C—H(...)π inter­actions.

Related literature

For C—H(...)F inter­actions, see: Althoff et al. (2006 [triangle]); Bats et al. (2000 [triangle]); Choudhury et al. (2004 [triangle]); D’Oria & Novoa (2008 [triangle]); Dunitz & Taylor (1997 [triangle]); Howard et al. (1996 [triangle]); Müller et al. (2007 [triangle]); O’Hagan (2008 [triangle]); Reichenbacher et al. (2005 [triangle]); Weiss et al. (1997 [triangle]). For the crystal structures of polyfluorinated benzenes, see: Thalladi et al. (1998 [triangle]). For crystallization techniques, see: Boese & Nussbaumer (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2668-scheme1.jpg

Experimental

Crystal data

  • C6H4F2
  • M r = 114.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2668-efi1.jpg
  • a = 24.6618 (13) Å
  • b = 12.2849 (5) Å
  • c = 7.2336 (4) Å
  • β = 106.842 (3)°
  • V = 2097.55 (18) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 153 K
  • 0.30 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.876, T max = 0.961
  • 7831 measured reflections
  • 2099 independent reflections
  • 1578 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.100
  • S = 1.01
  • 2099 reflections
  • 146 parameters
  • H-atom parameters not refined
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008 [triangle]) and GIMP (The GIMP team, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, glonal. DOI: 10.1107/S1600536809038987/ci2886sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038987/ci2886Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MTK and RB thank the DFG FOR-618. GRD thanks the DST for the award of a J.C. Bose fellowship. TST thanks the UGC for an SRF.

supplementary crystallographic information

Comment

Despite the high electronegativity difference between carbon and fluorine, the C—F bond acts as a poor hydrogen bond acceptor due to the hardness of the F-atom (Dunitz & Taylor, 1997; O'Hagan, 2008). The resultant weak C—H···F—C interactions (Howard et al., 1996; Reichenbacher et al., 2005) arise mainly due to electrostatic and dispersive forces between the Cδ±-Fδ- and the Hδ±-Cδ- fragments. These interactions, at the borderline of the hydrogen bond phenomenon, are also poorly directional and are deformed by other dominant interactions (Weiss et al., 1997; D'Oria & Novoa 2008; Müller et al., 2007). In the absence of other interactions these weak interactions can play a role in the overall crystal packing of the molecule (Bats et al., 2000; Choudhury et al., 2004; Althoff et al., 2006). In activated systems such as polyfluorobenzenes, C—H···F—C interactions may be of significance, and some of us had reported the crystal structures of several polyfluorinated benzenes in this connection (Thalladi et al., 1998). As a continuation of this work, we report here the crystal structure of 1,3-difluorobenzene. The comparison crystal structures of 1,2- and 1,4-difluorobenzene and 1,3,5-trifluorobenzene have been reported in this earlier work.

Experimental

Single crystals of 1,3-difluorobenzene were grown from commerical samples by zone melting in a quartz capillary at 163 K according to the procedure outlined by Boese & Nussbaumer (1994).

Refinement

H atoms were positioned geoemtrically (C-H = 0.95 or 0.96 Å) and refined using a riding model, with their isotropic displacement parameters set equal to 1.2 times Ueq of the corresponding carbon atom.

Figures

Fig. 1.
Crystal structure of 1,3-difluorobenzene: (a) two-dimensional network of C—H···F—C interactions viewed along the c axis, (b) with independent molecules coloured blue and green, (c) Herringbone arrangement of molecules ...
Fig. 2.
Displacement ellipsoid plot of 1,3-difluorobenzene.

Crystal data

C6H4F2F(000) = 928
Mr = 114.09Dx = 1.445 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2977 reflections
a = 24.6618 (13) Åθ = 2.9–28.2°
b = 12.2849 (5) ŵ = 0.13 mm1
c = 7.2336 (4) ÅT = 153 K
β = 106.842 (3)°Cylindric, colourless
V = 2097.55 (18) Å30.30 × 0.30 × 0.30 mm
Z = 16

Data collection

Bruker SMART APEXII area-detector diffractometer2099 independent reflections
Radiation source: fine-focus sealed tube1578 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 1.9°
Data collection strategy APEX 2/COSMO with chi +/– 10° scansh = −27→29
Absorption correction: multi-scan (SADABS; Bruker, 2004)k = −16→16
Tmin = 0.876, Tmax = 0.961l = −9→8
7831 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters not refined
wR(F2) = 0.100w = 1/[s2(Fo2) + (0.0494P)2 + 0.6228P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2099 reflectionsΔρmax = 0.19 e Å3
146 parametersΔρmin = −0.13 e Å3
0 restraintsExtinction correction: SHELXTL (Bruker, 2008), Fc*=kFc[1+0.001xFc2λ3sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.20034 (3)0.21738 (6)0.63089 (12)0.0520 (3)
F20.01617 (3)0.35397 (7)0.49907 (14)0.0587 (3)
C10.16251 (5)0.29864 (9)0.56491 (16)0.0349 (3)
C20.10797 (6)0.28273 (9)0.56876 (17)0.0372 (3)
H20.09660.21700.61880.045*
C30.07043 (6)0.36645 (10)0.49742 (18)0.0370 (3)
C40.08585 (6)0.46202 (9)0.42616 (17)0.0378 (3)
H40.05860.51870.37750.045*
C50.14156 (6)0.47408 (9)0.42727 (16)0.0370 (3)
H50.15310.53940.37930.044*
C60.18102 (6)0.39238 (9)0.49720 (17)0.0355 (3)
H60.21990.40080.49890.043*
F110.23615 (3)0.09707 (6)0.01979 (13)0.0571 (3)
F120.05258 (4)−0.03682 (6)−0.08892 (13)0.0625 (3)
C110.18189 (6)0.11273 (10)0.01807 (17)0.0365 (3)
C120.14440 (6)0.02770 (9)−0.03976 (17)0.0382 (3)
H120.1558−0.0409−0.08000.046*
C130.08994 (6)0.04613 (9)−0.03803 (18)0.0385 (3)
C140.07131 (6)0.14411 (9)0.01511 (18)0.0380 (3)
H140.03250.15450.01220.046*
C150.11075 (6)0.22716 (9)0.07194 (17)0.0383 (3)
H150.09920.29610.11050.046*
C160.16634 (6)0.21260 (9)0.07456 (18)0.0392 (3)
H160.19340.27050.11330.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0441 (6)0.0416 (4)0.0679 (5)0.0105 (3)0.0124 (4)0.0059 (3)
F20.0295 (6)0.0668 (5)0.0841 (6)−0.0076 (4)0.0234 (5)−0.0023 (4)
C10.0343 (9)0.0338 (5)0.0352 (6)0.0013 (5)0.0078 (6)−0.0017 (4)
C20.0397 (9)0.0341 (6)0.0401 (6)−0.0071 (5)0.0153 (6)−0.0012 (4)
C30.0257 (9)0.0455 (6)0.0411 (6)−0.0062 (5)0.0118 (6)−0.0064 (5)
C40.0346 (9)0.0382 (6)0.0379 (6)0.0027 (5)0.0064 (6)0.0002 (5)
C50.0405 (9)0.0351 (6)0.0362 (6)−0.0046 (5)0.0123 (6)0.0017 (4)
C60.0267 (9)0.0421 (6)0.0395 (6)−0.0053 (5)0.0122 (6)−0.0038 (5)
F110.0289 (6)0.0654 (5)0.0794 (6)0.0116 (4)0.0195 (5)0.0076 (4)
F120.0502 (6)0.0499 (5)0.0894 (6)−0.0173 (4)0.0235 (5)−0.0145 (4)
C110.0242 (9)0.0468 (6)0.0392 (6)0.0077 (5)0.0100 (6)0.0073 (5)
C120.0425 (9)0.0346 (6)0.0402 (6)0.0064 (5)0.0161 (6)0.0016 (5)
C130.0370 (9)0.0375 (6)0.0416 (6)−0.0045 (5)0.0122 (6)−0.0014 (5)
C140.0283 (9)0.0452 (6)0.0433 (7)0.0049 (5)0.0149 (6)0.0019 (5)
C150.0403 (9)0.0357 (6)0.0409 (6)0.0049 (5)0.0150 (6)−0.0018 (4)
C160.0355 (9)0.0381 (6)0.0423 (7)−0.0041 (5)0.0086 (6)−0.0017 (5)

Geometric parameters (Å, °)

F1—C11.3553 (13)F11—C111.3486 (14)
F2—C31.3506 (15)F12—C131.3515 (14)
C1—C21.3673 (18)C11—C121.3773 (17)
C1—C61.3797 (15)C11—C161.3820 (16)
C2—C31.3800 (17)C12—C131.3656 (18)
C2—H20.96C12—H120.96
C3—C41.3793 (16)C13—C141.3821 (16)
C4—C51.3794 (18)C14—C151.3872 (17)
C4—H40.96C14—H140.96
C5—C61.3874 (17)C15—C161.3772 (18)
C5—H50.95C15—H150.96
C6—H60.96C16—H160.96
F1—C1—C2117.92 (10)F11—C11—C12118.14 (11)
F1—C1—C6118.36 (11)F11—C11—C16118.92 (11)
C2—C1—C6123.71 (11)C12—C11—C16122.94 (12)
C1—C2—C3116.30 (10)C13—C12—C11116.54 (11)
C1—C2—H2121.7C13—C12—H12121.6
C3—C2—H2122.0C11—C12—H12121.8
F2—C3—C2118.12 (10)F12—C13—C12117.85 (10)
F2—C3—C4118.76 (12)F12—C13—C14118.50 (11)
C2—C3—C4123.12 (12)C12—C13—C14123.65 (11)
C3—C4—C5118.11 (11)C13—C14—C15117.50 (12)
C3—C4—H4121.0C13—C14—H14121.3
C5—C4—H4120.9C15—C14—H14121.2
C4—C5—C6121.10 (11)C16—C15—C14121.22 (11)
C4—C5—H5119.5C16—C15—H15119.3
C6—C5—H5119.4C14—C15—H15119.5
C1—C6—C5117.64 (12)C15—C16—C11118.14 (11)
C1—C6—H6121.2C15—C16—H16120.8
C5—C6—H6121.2C11—C16—H16121.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···F12i0.962.723.3750 (14)126
C4—H4···F2ii0.962.763.5386 (16)139
C5—H5···F11iii0.952.713.2948 (16)121
C6—H6···F11iii0.962.663.2644 (15)121
C6—H6···F1iv0.962.823.5789 (17)137
C12—H12···F1v0.962.703.3919 (14)130
C14—H14···F2vi0.962.723.3442 (16)123
C14—H14···F12vii0.962.733.5075 (18)138
C15—H15···F2vi0.962.813.3995 (17)120
C16—H16···F11viii0.962.753.5591 (16)142
C2—H2···Cg2ix0.962.963.6653 (13)131
C12—H12···Cg2v0.962.993.6547 (13)127
C5—H5···Cg1x0.952.833.5153 (12)130
C15—H15···Cg10.962.873.5283 (13)127

Symmetry codes: (i) x, −y, z+1/2; (ii) −x, −y+1, −z+1; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, −y+1/2, −z+1; (v) x, −y, z−1/2; (vi) −x, y, −z+1/2; (vii) −x, −y, −z; (viii) −x+1/2, −y+1/2, −z; (ix) x, y, z+1; (x) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2886).

References

  • Althoff, G., Ruiz, J., Rodriguez, V., Lopez, G., Perez, J. & Janiak, C. (2006). CrystEngComm, 8, 662–665.
  • Bats, J. W., Parsch, J. & Engels, J. W. (2000). Acta Cryst. C56, 201–205. [PubMed]
  • Boese, R. & Nussbaumer, M. (1994). In Situ Crystallisation Techniques. In Organic Crystal Chemistry, edited by D. W. Jones, pp. 20–37. Oxford University Press.
  • Bruker (2004). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644–o647. [PubMed]
  • D’Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423–436.
  • Dunitz, J. D. & Taylor, R. (1997). Chem. Eur. J.3, 89–98.
  • Howard, J. A. K., Hoy, V. J., O’Hagan, D. & Smith, G. T. (1996). Tetrahedron, 38, 12613–12622.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886. [PubMed]
  • O’Hagan, D. (2008). Chem. Soc. Rev.37, 308–319. [PubMed]
  • Reichenbacher, K., Suss, H. I. & Hulliger, J. (2005). J. Chem. Soc. Rev.34, 22–30. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thalladi, V. R., Weiss, H. C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc.120, 8702–8710.
  • The GIMP team (2008). The GNU Image Manipulation Program, http://www.gimp.org.
  • Weiss, H. C., Boese, R., Smith, H. L. & Haley, M. M. (1997). Chem. Commun. pp. 2403–2404.
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography