PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2835.
Published online 2009 October 23. doi:  10.1107/S1600536809042780
PMCID: PMC2971076

1,2-Bis(2-nitro­phen­yl)disulfane

Abstract

In the title compound, C12H8N2O4S2, the dihedral angle between the two benzene rings is 67.82 (9)°. In the crystal, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For background to disulfides, see: Kitamura et al. (1991 [triangle]); Palmer et al. (1995 [triangle]); Ramadas & Srinivasan (1995 [triangle]). For related structures, see: Glidewell et al. (2000 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-o2835-scheme1.jpg

Experimental

Crystal data

  • C12H8N2O4S2
  • M r = 308.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2835-efi1.jpg
  • a = 8.3762 (9) Å
  • b = 21.028 (2) Å
  • c = 8.1011 (10) Å
  • β = 111.768 (1)°
  • V = 1325.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 298 K
  • 0.44 × 0.18 × 0.13 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.838, T max = 0.948
  • 6598 measured reflections
  • 2317 independent reflections
  • 1507 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.117
  • S = 0.92
  • 2317 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042780/bq2169sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042780/bq2169Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support by the Foundation of Binzhou University (No. BZXYLG200609).

supplementary crystallographic information

Comment

Disulfides form an important class of compounds with respect to their synthetic and industrial applications and biological occurrence (Palmer, et al., 1995). Their syntheses remain an active area of interest in organic chemistry (Kitamura, et al., 1991). Disulfides are used as sulphenylating agents for enolates and other anions industrially; they find a wide range of applications as vulcanizing agents for rubber and elastomers. Several classes of naturally occurring compounds contain disulfides including gliotoxin and lipoic acid (Ramadas, et al., 1995).

In the title compound (I), (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compounds (Glidewell,et al., 2000).

In the crystal structure, the S—S bond length in the molecule is 2.0584 (12)° (S1—S2), showing the single bond character. Meanwhile, the dihedral angle between the benzene rings (C1-C6) and (C7-C12) is 67.82 (9)°, indicating that the two aromatic ring planes are not coplanar.

Moreover, the crystal supramolecular structure was built from the connections of intermolecular weak C-H···O hydrogen bonds interactions (Fig. 2).

Experimental

o-Nitrochlorobenzene (10.0 mmol), 20 ml ethanol and sodium disulfide (12.0 mmol) were mixed in 50 ml flash. After refluxing 6 h, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C12H8N2O4S2: C 46.74, H 2.62, N 9.09%; found: C 46.65, H 2.66, N 9.14%.

Refinement

All H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
Fig. 2.
A partial packing view of (I) showing the weak C-H..O hydrogen bonds with dashed lines. Symmetry codes: (a) -x, -y+1, -z; (b) x, y, z+1.

Crystal data

C12H8N2O4S2F(000) = 632
Mr = 308.32Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1601 reflections
a = 8.3762 (9) Åθ = 2.6–24.7°
b = 21.028 (2) ŵ = 0.42 mm1
c = 8.1011 (10) ÅT = 298 K
β = 111.768 (1)°Needle, yellow
V = 1325.1 (3) Å30.44 × 0.18 × 0.13 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2317 independent reflections
Radiation source: fine-focus sealed tube1507 reflections with I > 2σ(I)
graphiteRint = 0.045
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→9
Tmin = 0.838, Tmax = 0.948k = −25→20
6598 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.92w = 1/[σ2(Fo2) + (0.0627P)2] where P = (Fo2 + 2Fc2)/3
2317 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.09105 (9)0.26719 (4)0.07988 (11)0.0597 (3)
S20.01195 (10)0.35209 (4)−0.05162 (11)0.0621 (3)
N10.3638 (4)0.16520 (13)0.2840 (4)0.0692 (8)
N2−0.2348 (3)0.46767 (13)−0.1758 (4)0.0619 (7)
O10.2185 (3)0.15373 (11)0.1813 (4)0.0830 (7)
O20.4683 (4)0.12365 (13)0.3492 (5)0.1297 (13)
O3−0.1569 (3)0.44411 (12)−0.2595 (3)0.0852 (7)
O4−0.3526 (4)0.50494 (12)−0.2385 (4)0.0995 (9)
C10.3037 (3)0.28110 (13)0.2387 (4)0.0473 (7)
C20.4143 (4)0.23134 (13)0.3261 (4)0.0531 (8)
C30.5754 (4)0.24239 (16)0.4559 (5)0.0685 (9)
H30.64540.20840.51240.082*
C40.6305 (4)0.30339 (18)0.5001 (5)0.0779 (10)
H40.73820.31120.58690.093*
C50.5255 (4)0.35347 (16)0.4151 (5)0.0719 (10)
H50.56310.39500.44480.086*
C60.3655 (4)0.34241 (14)0.2866 (4)0.0594 (8)
H60.29720.37680.23050.071*
C7−0.0762 (3)0.39748 (13)0.0814 (4)0.0485 (7)
C8−0.1831 (3)0.44971 (13)0.0136 (4)0.0494 (7)
C9−0.2478 (4)0.48675 (15)0.1161 (5)0.0633 (9)
H9−0.32000.52090.06600.076*
C10−0.2036 (4)0.47214 (17)0.2937 (5)0.0714 (10)
H10−0.24420.49690.36490.086*
C11−0.0996 (4)0.42093 (16)0.3642 (4)0.0671 (9)
H11−0.06990.41130.48390.081*
C12−0.0371 (3)0.38288 (15)0.2607 (4)0.0550 (8)
H120.03070.34770.31090.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0511 (4)0.0572 (5)0.0614 (6)−0.0011 (4)0.0099 (4)−0.0114 (4)
S20.0619 (5)0.0762 (6)0.0455 (5)0.0124 (4)0.0167 (4)−0.0020 (4)
N10.0631 (18)0.0618 (18)0.083 (2)0.0056 (16)0.0281 (17)0.0059 (16)
N20.0582 (16)0.0521 (17)0.064 (2)−0.0038 (13)0.0096 (15)0.0000 (15)
O10.0839 (18)0.0626 (16)0.093 (2)−0.0072 (13)0.0213 (16)−0.0079 (13)
O20.097 (2)0.0610 (17)0.201 (4)0.0235 (16)0.020 (2)0.026 (2)
O30.0949 (18)0.106 (2)0.0536 (15)0.0135 (16)0.0258 (14)0.0114 (14)
O40.111 (2)0.0818 (18)0.086 (2)0.0278 (17)0.0132 (16)0.0264 (15)
C10.0420 (15)0.0549 (18)0.0471 (18)0.0003 (14)0.0192 (13)−0.0036 (14)
C20.0537 (17)0.0514 (18)0.059 (2)0.0004 (14)0.0272 (16)0.0023 (15)
C30.0526 (18)0.075 (2)0.071 (2)0.0103 (17)0.0154 (17)0.0117 (19)
C40.0493 (19)0.087 (3)0.082 (3)−0.0052 (19)0.0056 (18)−0.003 (2)
C50.0541 (19)0.068 (2)0.084 (3)−0.0084 (18)0.0146 (18)−0.009 (2)
C60.0504 (17)0.0541 (19)0.071 (2)0.0010 (15)0.0194 (16)−0.0010 (16)
C70.0401 (14)0.0565 (18)0.0460 (18)−0.0034 (13)0.0126 (13)−0.0048 (14)
C80.0443 (15)0.0472 (17)0.0504 (19)−0.0073 (13)0.0103 (14)−0.0015 (14)
C90.0589 (19)0.056 (2)0.072 (3)−0.0018 (15)0.0210 (18)−0.0066 (17)
C100.072 (2)0.075 (2)0.073 (3)0.0013 (19)0.034 (2)−0.021 (2)
C110.066 (2)0.085 (2)0.053 (2)0.0054 (19)0.0263 (17)−0.0023 (18)
C120.0516 (17)0.066 (2)0.0468 (19)0.0048 (15)0.0179 (15)0.0018 (15)

Geometric parameters (Å, °)

S1—C11.793 (3)C4—H40.9300
S1—S22.0584 (12)C5—C61.378 (4)
S2—C71.791 (3)C5—H50.9300
N1—O21.210 (3)C6—H60.9300
N1—O11.217 (3)C7—C81.395 (4)
N1—C21.457 (4)C7—C121.399 (4)
N2—O31.208 (3)C8—C91.388 (4)
N2—O41.214 (3)C9—C101.380 (5)
N2—C81.480 (4)C9—H90.9300
C1—C61.390 (4)C10—C111.370 (5)
C1—C21.403 (4)C10—H100.9300
C2—C31.389 (4)C11—C121.394 (4)
C3—C41.365 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.381 (4)
C1—S1—S2105.87 (10)C4—C5—H5119.7
C7—S2—S1106.03 (11)C5—C6—C1121.6 (3)
O2—N1—O1122.2 (3)C5—C6—H6119.2
O2—N1—C2119.1 (3)C1—C6—H6119.2
O1—N1—C2118.6 (3)C8—C7—C12116.8 (3)
O3—N2—O4123.7 (3)C8—C7—S2122.0 (2)
O3—N2—C8117.7 (3)C12—C7—S2121.2 (2)
O4—N2—C8118.6 (3)C9—C8—C7122.8 (3)
C6—C1—C2116.3 (3)C9—C8—N2116.6 (3)
C6—C1—S1121.3 (2)C7—C8—N2120.5 (3)
C2—C1—S1122.3 (2)C10—C9—C8119.0 (3)
C3—C2—C1122.1 (3)C10—C9—H9120.5
C3—C2—N1116.9 (3)C8—C9—H9120.5
C1—C2—N1120.9 (3)C11—C10—C9119.5 (3)
C4—C3—C2119.7 (3)C11—C10—H10120.2
C4—C3—H3120.2C9—C10—H10120.2
C2—C3—H3120.2C10—C11—C12121.6 (3)
C3—C4—C5119.6 (3)C10—C11—H11119.2
C3—C4—H4120.2C12—C11—H11119.2
C5—C4—H4120.2C11—C12—C7120.2 (3)
C6—C5—C4120.6 (3)C11—C12—H12119.9
C6—C5—H5119.7C7—C12—H12119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.533.231 (4)133
C11—H11···O3ii0.932.543.293 (4)138

Symmetry codes: (i) −x, −y+1, −z; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2169).

References

  • Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893–905. [PubMed]
  • Kitamura, T., Nutsyuki, J. & Taniguch, H. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1607–1608.
  • Palmer, B. D., Rewcastle, G. W., Thompson, A. M., Boyd, M., Showalter, H. D. H., Sercel, A. D., Fry, D. W., Kraker, A. J. & Denny, W. A. (1995). J. Med. Chem.38, 58–67. [PubMed]
  • Ramadas, K. & Srinivasan, N. (1995). Synth. Commun.25, 227–234.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography