PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2620.
Published online 2009 October 3. doi:  10.1107/S1600536809039361
PMCID: PMC2971075

Phenyl 4-methyl­benzoate

Abstract

The structure of the title compound, C14H12O2, resembles those of phenyl benzoate and 4-methyl­phenyl benzoate, with similar bond parameters. The two aromatic rings make a dihedral angle of 76.0 (1)°. The plane of the central —C(=O)—O— group is twisted by 9.4 (2)° out of the plane of the benzoyl ring, and by 83.3 (1)° out of the plane of the phenyl ring. The crystal structure exhibits weak parallel stacking of the benzoyl rings, with an inter­planar distance of 3.65 Å and an offset of 1.84 Å. The methyl group shows orientational disorder.

Related literature

For preparation of the compound, see: Nayak & Gowda (2009 [triangle]). For background to our study of the effects of substituents on the crystal structures of aryl benzoates and for related structures, see: Gowda et al. (2007a [triangle],b [triangle], 2008 [triangle]). For phen­yl benzoate, see: Adams & Morsi (1976 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-o2620-scheme1.jpg

Experimental

Crystal data

  • C14H12O2
  • M r = 212.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2620-efi1.jpg
  • a = 12.3440 (4) Å
  • b = 8.1332 (2) Å
  • c = 12.1545 (4) Å
  • β = 110.911 (4)°
  • V = 1139.89 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 K
  • 0.52 × 0.46 × 0.32 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.96, T max = 0.98
  • 20946 measured reflections
  • 2138 independent reflections
  • 1468 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.145
  • S = 1.03
  • 2138 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction , 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039361/om2279sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039361/om2279Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

supplementary crystallographic information

Comment

In the present work, as a part of the study of the substituent effects on the crystal structures of aryl benzoates (Gowda et al., 2007a, b; 2008), the structure of phenyl-4-methylbenzoate (I) has been determined. The structure of (I) (Fig. 1) is similar to those of phenyl benzoate (II) (Adams & Morsi, 1976), 4-methylphenyl benzoate (III) (Gowda et al., 2007b), 4-methylphenyl 2-methylbenzoate (IV) (Gowda et al., 2008), 4-methylphenyl 4-methylbenzoate (V) (Gowda et al., 2007a) and other aryl benzoates. The two benzene rings make a dihedral angle of 76.0 (1)°, compared to the values of 55.7° for (II), 60.17 (7)° (III), 73.04 (8)° (IV) and 63.57 (5)° (V). The plane of the central –C(=O)–O– group in (I) is twisted 9.4 (2)° out of the plane of the benzoyl ring, and 83.3 (1)° out of the plane of the phenyl ring. The crystal structure exhibits weak parallel stacking of benzoyl rings, with interplanar distance of 3.65 Å and offset 1.84 Å. In the crystal structure, there are no classical hydrogen bonds. The molecules in the structure are packed into chains as viewed in the ac plane (Fig. 2).

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2009). The purity of the compound was checked by determination of its melting point. It was characterized by infrared and NMR spectra (Nayak & Gowda, 2009). Colorless single crystals of the title compound were obtained by slow evaporation of its ethanol solution.

Refinement

All hydrogen atoms were placed in calculated positions with C–H distances 0.93 or 0.96 Å. The C14 methyl group shows orientational disorder in the hydrogen atom positions. The two sets of methyl hydrogen atoms were refined with equal occupancy. The Uiso(H) values were set at 1.2 Ueq(C-aromatic) or 1.5 Ueq(C-methyl).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound.

Crystal data

C14H12O2F(000) = 448
Mr = 212.24Dx = 1.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9248 reflections
a = 12.3440 (4) Åθ = 3.1–29.3°
b = 8.1332 (2) ŵ = 0.08 mm1
c = 12.1545 (4) ÅT = 295 K
β = 110.911 (4)°Block, colourless
V = 1139.89 (6) Å30.52 × 0.46 × 0.32 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector2138 independent reflections
graphite1468 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.027
ω scansθmax = 25.6°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −15→15
Tmin = 0.96, Tmax = 0.98k = −9→9
20946 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0889P)2 + 0.0575P] where P = (Fo2 + 2Fc2)/3
2138 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.44050 (14)0.7055 (2)0.52718 (13)0.0649 (4)
C20.42337 (16)0.6054 (2)0.60914 (16)0.0826 (5)
H20.35090.5590.59550.099*
C30.51407 (17)0.5731 (2)0.71233 (15)0.0847 (6)
H30.5030.50450.76860.102*
C40.61978 (16)0.6415 (2)0.73202 (15)0.0809 (5)
H40.6810.62010.80190.097*
C50.63602 (14)0.7415 (2)0.64933 (16)0.0792 (5)
H50.70850.78820.66340.095*
C60.54637 (15)0.7745 (2)0.54505 (15)0.0737 (5)
H60.55770.84190.48830.088*
C70.26747 (13)0.84141 (18)0.41132 (13)0.0602 (4)
C80.17152 (12)0.83643 (17)0.29559 (12)0.0558 (4)
C90.17601 (13)0.74161 (18)0.20301 (13)0.0629 (4)
H90.24270.68220.21080.075*
C100.08196 (13)0.73479 (19)0.09922 (14)0.0660 (4)
H100.08680.67160.03740.079*
C11−0.01947 (13)0.81929 (18)0.08448 (13)0.0633 (4)
C12−0.02227 (14)0.9156 (2)0.17716 (15)0.0718 (5)
H12−0.08890.97540.16910.086*
C130.07132 (14)0.92496 (18)0.28101 (14)0.0679 (4)
H130.06740.99110.34190.082*
C14−0.12267 (15)0.8048 (2)−0.02748 (15)0.0835 (5)
H14A−0.16560.906−0.0420.125*0.5
H14B−0.17150.7167−0.02030.125*0.5
H14C−0.0970.7825−0.09180.125*0.5
H14D−0.19240.8088−0.00980.125*0.5
H14E−0.11920.7023−0.06520.125*0.5
H14F−0.12240.8941−0.07910.125*0.5
O10.35063 (10)0.72961 (15)0.41782 (10)0.0865 (4)
O20.27223 (9)0.92969 (13)0.49154 (9)0.0758 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0612 (9)0.0712 (10)0.0534 (8)0.0089 (8)0.0095 (7)−0.0108 (7)
C20.0734 (11)0.0913 (12)0.0790 (11)−0.0181 (9)0.0221 (9)−0.0136 (10)
C30.1043 (15)0.0767 (11)0.0670 (11)−0.0104 (10)0.0230 (10)0.0040 (8)
C40.0817 (12)0.0714 (10)0.0689 (11)0.0066 (9)0.0016 (9)−0.0025 (8)
C50.0599 (10)0.0815 (12)0.0842 (12)−0.0029 (8)0.0110 (9)−0.0022 (9)
C60.0729 (11)0.0763 (11)0.0705 (10)0.0036 (9)0.0238 (9)0.0047 (8)
C70.0624 (9)0.0576 (8)0.0608 (9)−0.0016 (7)0.0222 (7)−0.0014 (7)
C80.0562 (8)0.0526 (8)0.0581 (8)−0.0029 (6)0.0198 (7)0.0001 (6)
C90.0572 (9)0.0656 (9)0.0629 (9)0.0044 (7)0.0178 (7)−0.0038 (7)
C100.0642 (10)0.0704 (10)0.0597 (9)−0.0018 (8)0.0176 (8)−0.0059 (7)
C110.0589 (9)0.0602 (9)0.0651 (9)−0.0043 (7)0.0153 (7)0.0109 (7)
C120.0622 (10)0.0683 (10)0.0806 (11)0.0143 (8)0.0204 (8)0.0094 (8)
C130.0733 (10)0.0615 (9)0.0697 (10)0.0077 (8)0.0264 (8)−0.0012 (7)
C140.0669 (10)0.0899 (12)0.0778 (11)−0.0072 (9)0.0063 (9)0.0131 (9)
O10.0739 (8)0.1056 (9)0.0623 (7)0.0271 (7)0.0024 (6)−0.0195 (6)
O20.0821 (8)0.0734 (7)0.0660 (7)0.0022 (6)0.0193 (6)−0.0148 (5)

Geometric parameters (Å, °)

C1—C21.361 (2)C8—C131.387 (2)
C1—C61.366 (2)C9—C101.377 (2)
C1—O11.4082 (18)C9—H90.93
C2—C31.376 (2)C10—C111.383 (2)
C2—H20.93C10—H100.93
C3—C41.359 (2)C11—C121.383 (2)
C3—H30.93C11—C141.500 (2)
C4—C51.362 (2)C12—C131.376 (2)
C4—H40.93C12—H120.93
C5—C61.379 (2)C13—H130.93
C5—H50.93C14—H14A0.96
C6—H60.93C14—H14B0.96
C7—O21.1954 (16)C14—H14C0.96
C7—O11.3524 (18)C14—H14D0.96
C7—C81.481 (2)C14—H14E0.96
C8—C91.381 (2)C14—H14F0.96
C2—C1—C6121.27 (15)C8—C9—H9119.9
C2—C1—O1119.90 (15)C9—C10—C11121.80 (14)
C6—C1—O1118.65 (15)C9—C10—H10119.1
C1—C2—C3119.54 (17)C11—C10—H10119.1
C1—C2—H2120.2C12—C11—C10117.44 (14)
C3—C2—H2120.2C12—C11—C14121.56 (15)
C4—C3—C2120.02 (17)C10—C11—C14121.00 (15)
C4—C3—H3120C13—C12—C11121.45 (15)
C2—C3—H3120C13—C12—H12119.3
C3—C4—C5119.96 (16)C11—C12—H12119.3
C3—C4—H4120C12—C13—C8120.48 (15)
C5—C4—H4120C12—C13—H13119.8
C4—C5—C6120.86 (17)C8—C13—H13119.8
C4—C5—H5119.6C11—C14—H14A109.5
C6—C5—H5119.6C11—C14—H14B109.5
C1—C6—C5118.34 (16)H14A—C14—H14B109.5
C1—C6—H6120.8C11—C14—H14C109.5
C5—C6—H6120.8H14A—C14—H14C109.5
O2—C7—O1122.75 (13)H14B—C14—H14C109.5
O2—C7—C8125.51 (14)C11—C14—H14D109.5
O1—C7—C8111.72 (12)C11—C14—H14E109.5
C9—C8—C13118.62 (14)H14D—C14—H14E109.5
C9—C8—C7122.54 (13)C11—C14—H14F109.5
C13—C8—C7118.79 (13)H14D—C14—H14F109.5
C10—C9—C8120.18 (14)H14E—C14—H14F109.5
C10—C9—H9119.9C7—O1—C1118.32 (11)
C6—C1—C2—C30.3 (3)C7—C8—C9—C10176.63 (14)
O1—C1—C2—C3175.36 (15)C8—C9—C10—C11−0.9 (2)
C1—C2—C3—C40.2 (3)C9—C10—C11—C121.8 (2)
C2—C3—C4—C5−0.3 (3)C9—C10—C11—C14−177.47 (14)
C3—C4—C5—C6−0.1 (3)C10—C11—C12—C13−1.2 (2)
C2—C1—C6—C5−0.7 (3)C14—C11—C12—C13178.09 (15)
O1—C1—C6—C5−175.82 (14)C11—C12—C13—C8−0.3 (2)
C4—C5—C6—C10.6 (3)C9—C8—C13—C121.3 (2)
O2—C7—C8—C9174.22 (14)C7—C8—C13—C12−176.12 (14)
O1—C7—C8—C9−7.1 (2)O2—C7—O1—C16.3 (2)
O2—C7—C8—C13−8.5 (2)C8—C7—O1—C1−172.34 (13)
O1—C7—C8—C13170.12 (13)C2—C1—O1—C782.15 (19)
C13—C8—C9—C10−0.6 (2)C6—C1—O1—C7−102.63 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2279).

References

  • Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3867.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1581. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007b). Acta Cryst. E63, o3563.
  • Nayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63 In preparation.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography