PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2933.
Published online 2009 October 31. doi:  10.1107/S1600536809040914
PMCID: PMC2971073

(4-Bromo­phen­yl)(1H-indol-7-yl)methanone

Abstract

In the crystal, the mol­ecules of the title compound, C15H10BrNO, are connected into centrosymmetric dimers by pairs of N—H(...)O hydrogen bonds. The dihedral angle between the planes of indole ring system and benzene ring is 50.13 (5)°. The indole plane is significantly less twisted from the plane of the central C—C(=O)—C bridge than the benzene plane [dihedral angles = 15.51 (3) and 40.13 (7)°, respectively]. The bond angles within the benzene ring show an approximately additive effect of the influence of both substituents.

Related literature

For applications of indoles, see: Murphy et al. (1997 [triangle]); Gupta et al. (1982 [triangle]); Al-Soud et al. (2004 [triangle]); Shigenaga et al. (1993 [triangle]); Butera et al. (2001 [triangle]). For synthethic procedures, see: Robinson (1982 [triangle]); Walsh et al. (1984 [triangle]). For related crystal structures of 7-pyridyl­indoles, see: Mudadu et al. (2006 [triangle]). For the influence of the substituent on the geometry of the phenyl ring, see: Domenicano (1988 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2933-scheme1.jpg

Experimental

Crystal data

  • C15H10BrNO
  • M r = 300.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2933-efi1.jpg
  • a = 11.3241 (4) Å
  • b = 7.4651 (3) Å
  • c = 14.9579 (5) Å
  • β = 103.100 (4)°
  • V = 1231.57 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.32 mm−1
  • T = 291 K
  • 0.4 × 0.2 × 0.15 mm

Data collection

  • Oxford Diffraction Xcalibur (Sapphire2, large Be window) diffractometer
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.26, T max = 0.60
  • 25357 measured reflections
  • 2558 independent reflections
  • 1864 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.063
  • S = 1.06
  • 2558 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040914/er2074sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040914/er2074Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CSC thanks the University of Mysore for research facilities.

supplementary crystallographic information

Comment

The synthesis of indole derivatives has long been a topic of fundamental interest to organic and medicinal chemists (Murphy et al., 1997). Indole derivatives are important pharmacologically, possessing anti-allergic (Shigenaga et al., 1993), central-nervous-system depressant (Sen Gupta et al., 1982), muscle relaxant (Butera et al.,2001), and anti-cancer (Al-Soud et al.,2004) properties. The Fischer indole synthesis is the most widely used method for the preparation of indole derivatives (e.g., Robinson, 1982). The title compound (I) is an intermediate for preparation of bromofenac, which is used as analgesic.

There are only few crystal structures of 7-substituted indoles in the Cambridge Crystallographic Database (Allen, 2002). Recently, the crystal structures of three 7-pyridylindoles (Mudadu et al., 2006) have been reported.

The conformation of the molecule I can be described by the mutual orientation of the three approximately planar fragments (Fig. 1): indole system (maximum deviation from the least-squares plane of 0.0142 (7) Å), phenyl ring (maximum deviation 0.0145 (13) Å), and the central C—C(=O)—C bridge (0.0040 (16) Å). The dihedral angle between the terminal planes, of indole and phenyl fragments, is 50.13 (5)°, while it can be noted that the indole plane is less inclined with respect to the central bridge plane (15.51 (3)°) than is the phenyl one (40.13 (7)°). The geometry of the phenyl ring is affected by the presence of substituents; using the values given by Domenicano (1988) and obtained form the search of the CSD (Allen, 2002), it might be shown that the overall influence on the bond angles pattern is close to additivity of separate effects of both Br and COAr substituents.

In the crystal structure the molecules of (I) are connected into the centrosymmetric, hydrogen bonded pairs - R22(12) motifs - by means of relatively strong and linear N—H···O hydrogen bonds (Fig. 2). These dimers are packed by means of van der Waals and weak C—H···π interactions.

Experimental

A mixture of (4-bromophenyl)(2,3-dihydro-1H-indol-7-yl)methanone (2.4 g, 7.9 m mol) and activated manganese dioxide (2.2 g, 25 m mol) in 100 ml dichloromethane was refluxed for 18 h (Fig. 3). The contents were filtered and the organic layer was concentrated. The product formed (Walsh et al., 1984) was crystallized from tetrahydrofuran (m.p.: 435 – 437 K).

Refinement

Hydrogen atoms were put in the idealized positions, and refined as riding model.

Figures

Fig. 1.
Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
Fig. 2.
The hydrogen bonded dimer of molecules of I. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) 1 - x,-y,2 - z.
Fig. 3.
The preparation of the title compound.

Crystal data

C15H10BrNOF(000) = 600
Mr = 300.15Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12183 reflections
a = 11.3241 (4) Åθ = 2.0–26.8°
b = 7.4651 (3) ŵ = 3.32 mm1
c = 14.9579 (5) ÅT = 291 K
β = 103.100 (4)°Block, colourless
V = 1231.57 (8) Å30.4 × 0.2 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur (Sapphire2, large Be window) diffractometer2558 independent reflections
Radiation source: Enhance (Mo) X-ray Source1864 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 8.1929 pixels mm-1θmax = 26.8°, θmin = 2.1°
ω scansh = −13→14
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −9→9
Tmin = 0.26, Tmax = 0.60l = −18→18
25357 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2558 reflectionsΔρmax = 0.34 e Å3
174 parametersΔρmin = −0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0139 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.28642 (14)−0.0239 (2)0.94540 (10)0.0386 (4)
H10.3601−0.02740.97680.053 (6)*
C20.18656 (19)−0.0579 (3)0.97896 (14)0.0459 (5)
H20.1876−0.08721.03960.043 (5)*
C30.08506 (18)−0.0424 (3)0.91063 (14)0.0449 (5)
H30.0056−0.06040.91570.053 (6)*
C40.12356 (15)0.0064 (3)0.83002 (13)0.0344 (4)
C50.25153 (15)0.0167 (3)0.85411 (11)0.0315 (4)
C60.32088 (15)0.0562 (2)0.78996 (12)0.0314 (4)
C70.25687 (16)0.0912 (2)0.70024 (12)0.0353 (4)
H70.29950.12000.65590.035 (5)*
C80.13073 (17)0.0839 (2)0.67577 (13)0.0400 (5)
H80.09080.10830.61550.046 (6)*
C90.06422 (17)0.0413 (2)0.73904 (14)0.0387 (5)
H9−0.01990.03570.72150.053 (6)*
C100.45391 (16)0.0642 (2)0.81808 (12)0.0372 (4)
O100.50404 (12)0.0723 (2)0.90015 (9)0.0593 (5)
C110.53044 (15)0.0650 (2)0.74900 (12)0.0322 (4)
C120.50633 (16)−0.0445 (2)0.67135 (13)0.0352 (4)
H120.4387−0.11880.66050.041 (6)*
C130.58143 (17)−0.0438 (2)0.61058 (12)0.0371 (5)
H130.5656−0.11890.55960.035 (5)*
C140.68042 (16)0.0694 (3)0.62617 (12)0.0363 (4)
Br140.779765 (18)0.07710 (3)0.539996 (14)0.05633 (12)
C150.70737 (16)0.1777 (3)0.70285 (12)0.0389 (5)
H150.77460.25290.71290.051 (6)*
C160.63296 (15)0.1728 (3)0.76455 (12)0.0366 (4)
H160.65190.24280.81730.036 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0302 (9)0.0511 (11)0.0332 (8)−0.0010 (8)0.0045 (7)0.0004 (7)
C20.0452 (12)0.0568 (14)0.0390 (10)−0.0020 (10)0.0167 (9)−0.0002 (10)
C30.0309 (11)0.0563 (14)0.0504 (12)−0.0031 (10)0.0157 (9)−0.0039 (10)
C40.0294 (10)0.0291 (10)0.0446 (10)0.0011 (8)0.0080 (8)−0.0049 (9)
C50.0303 (10)0.0275 (10)0.0350 (10)0.0002 (8)0.0034 (7)−0.0032 (8)
C60.0268 (9)0.0303 (11)0.0353 (9)−0.0016 (8)0.0032 (7)−0.0017 (8)
C70.0326 (10)0.0355 (11)0.0367 (10)−0.0008 (9)0.0057 (8)0.0033 (8)
C80.0348 (11)0.0415 (12)0.0387 (10)0.0027 (9)−0.0020 (8)0.0028 (9)
C90.0248 (10)0.0376 (12)0.0502 (11)0.0015 (8)0.0011 (8)−0.0024 (9)
C100.0320 (10)0.0415 (12)0.0358 (10)−0.0035 (9)0.0028 (8)0.0037 (9)
O100.0339 (8)0.1051 (14)0.0347 (7)−0.0108 (8)−0.0010 (6)0.0059 (8)
C110.0240 (9)0.0341 (10)0.0353 (9)0.0015 (8)−0.0004 (7)0.0034 (8)
C120.0283 (10)0.0321 (12)0.0410 (10)−0.0031 (8)−0.0007 (8)0.0021 (8)
C130.0354 (11)0.0350 (12)0.0363 (10)0.0059 (9)−0.0015 (8)−0.0007 (9)
C140.0283 (10)0.0428 (12)0.0366 (9)0.0071 (9)0.0047 (8)0.0086 (9)
Br140.04658 (16)0.0801 (2)0.04560 (15)0.00255 (12)0.01738 (10)0.00603 (11)
C150.0268 (10)0.0424 (12)0.0454 (11)−0.0057 (9)0.0034 (8)−0.0012 (9)
C160.0284 (10)0.0402 (12)0.0386 (10)−0.0011 (9)0.0020 (8)−0.0045 (9)

Geometric parameters (Å, °)

N1—C21.361 (3)C8—H80.9300
N1—C51.367 (2)C9—H90.9300
N1—H10.8600C10—O101.232 (2)
C2—C31.359 (3)C10—C111.492 (2)
C2—H20.9300C11—C161.388 (2)
C3—C41.419 (3)C11—C121.395 (3)
C3—H30.9300C12—C131.378 (3)
C4—C91.399 (3)C12—H120.9300
C4—C51.414 (2)C13—C141.381 (3)
C5—C61.402 (2)C13—H130.9300
C6—C71.398 (2)C14—C151.380 (3)
C6—C101.471 (2)C14—Br141.8941 (18)
C7—C81.393 (2)C15—C161.384 (2)
C7—H70.9300C15—H150.9300
C8—C91.374 (3)C16—H160.9300
C2—N1—C5109.49 (16)C8—C9—C4119.72 (17)
C2—N1—H1125.3C8—C9—H9120.1
C5—N1—H1125.3C4—C9—H9120.1
C3—C2—N1109.79 (18)O10—C10—C6119.87 (17)
C3—C2—H2125.1O10—C10—C11118.77 (17)
N1—C2—H2125.1C6—C10—C11121.36 (15)
C2—C3—C4106.88 (17)C16—C11—C12118.51 (17)
C2—C3—H3126.6C16—C11—C10118.77 (16)
C4—C3—H3126.6C12—C11—C10122.66 (16)
C9—C4—C5118.45 (17)C13—C12—C11120.89 (17)
C9—C4—C3134.58 (18)C13—C12—H12119.6
C5—C4—C3106.97 (16)C11—C12—H12119.6
N1—C5—C6130.57 (15)C12—C13—C14119.29 (17)
N1—C5—C4106.86 (16)C12—C13—H13120.4
C6—C5—C4122.53 (15)C14—C13—H13120.4
C7—C6—C5116.57 (16)C15—C14—C13121.14 (17)
C7—C6—C10122.80 (16)C15—C14—Br14119.62 (14)
C5—C6—C10120.61 (15)C13—C14—Br14119.24 (14)
C8—C7—C6121.52 (17)C14—C15—C16119.04 (18)
C8—C7—H7119.2C14—C15—H15120.5
C6—C7—H7119.2C16—C15—H15120.5
C9—C8—C7121.18 (17)C15—C16—C11121.07 (18)
C9—C8—H8119.4C15—C16—H16119.5
C7—C8—H8119.4C11—C16—H16119.5
C5—N1—C2—C30.7 (2)C3—C4—C9—C8−179.0 (2)
N1—C2—C3—C4−0.8 (2)C7—C6—C10—O10163.69 (18)
C2—C3—C4—C9179.9 (2)C5—C6—C10—O10−14.7 (3)
C2—C3—C4—C50.6 (2)C7—C6—C10—C11−15.5 (3)
C2—N1—C5—C6−178.08 (19)C5—C6—C10—C11166.12 (17)
C2—N1—C5—C4−0.3 (2)O10—C10—C11—C16−37.9 (3)
C9—C4—C5—N1−179.61 (17)C6—C10—C11—C16141.34 (18)
C3—C4—C5—N1−0.2 (2)O10—C10—C11—C12139.08 (19)
C9—C4—C5—C6−1.6 (3)C6—C10—C11—C12−41.7 (3)
C3—C4—C5—C6177.79 (17)C16—C11—C12—C13−1.0 (3)
N1—C5—C6—C7179.52 (18)C10—C11—C12—C13−177.97 (16)
C4—C5—C6—C72.0 (3)C11—C12—C13—C14−1.2 (3)
N1—C5—C6—C10−2.0 (3)C12—C13—C14—C152.0 (3)
C4—C5—C6—C10−179.52 (18)C12—C13—C14—Br14−177.47 (13)
C5—C6—C7—C8−1.1 (3)C13—C14—C15—C16−0.4 (3)
C10—C6—C7—C8−179.52 (17)Br14—C14—C15—C16179.00 (14)
C6—C7—C8—C9−0.2 (3)C14—C15—C16—C11−1.9 (3)
C7—C8—C9—C40.7 (3)C12—C11—C16—C152.5 (3)
C5—C4—C9—C80.2 (3)C10—C11—C16—C15179.66 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10i0.862.142.935 (2)153

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2074).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Al-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775–783. [PubMed]
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343-350.
  • Butera, J. A., Antane, S. A., Hirth, B., Lennox, J. R., Sheldon, J. H., Norton, N. W., Warga, D. & Argentieri, T. M. (2001). Bioorg. Med. Chem. Lett.11, 2093–2097. [PubMed]
  • Domenicano, A. (1988). In Stereochemical Application of Gas-phase Electron Diffraction, Part B, Structural Information for Selected Classes of Compounds, edited by I. Hargittai & M. Hargittai, pp. 281–324. Weinheim: VCH.
  • Gupta, A. K. S., Srivastava, N. & Gupta, A. A. (1982). Curr. Sci.51, 1100–1103.
  • Mudadu, M. S., Singh, A. & Thummel, R. P. (2006). J. Org. Chem.71, 7611–7617. [PubMed]
  • Murphy, J. A., Scott, K. A., Sinclair, R. S. & Lewis, N. (1997). Tetrahedron Lett.38, 7295–7298.
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Robinson, B. (1982). The Fischer Indole Synthesis New York: John Wiley and Sons.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shigenaga, S., Manabe, T., Matsuda, H., Fujii, T., Hiroi, J. & &Matsuo, M. (1993). Chem. Pharm. Bull.41, 1589–1595. [PubMed]
  • Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Walsh, D. A., Moran, H. W., Shamblee, D. A., Uwaydha, I. M., Welstead, W. J., Sancilio, L. F. & Dannenburg, W. N. (1984). J. Med. Chem.27, 1379–1388. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography