PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2885–o2886.
Published online 2009 October 28. doi:  10.1107/S1600536809043311
PMCID: PMC2971068

t-3-Ethyl-r-2,c-7-bis­(4-methoxy­phen­yl)-1,4-diazepan-5-one

Abstract

The title compound, C21H26N2O3, crystallizes with two independent mol­ecules in the asymmetric unit. In both independent mol­ecules, the diazepine ring adopts a chair conformation. In the crystal, the independent mol­ecules exist as N—H(...)O hydrogen-bonded R 2 2(8) dimers which are linked via N—H(...)O hydrogen bonds, forming tetra­mers. The tetra­mers are linked by C—H(...)O hydrogen bonds. In one of the molecules in the asymmetric unit, the terminal C atom of the ethyl group is disordered over two positions with refined occupancies of 0.742 (4) and 0.258 (4).

Related literature

For general background to diazepine derivatives, see: Hirokawa et al. (1998 [triangle]); Jeyaraman & Ponnuswamy (1997 [triangle]); Senthil Kumar et al. (1992 [triangle]). For asymmetry parameters, see: Nardelli (1983 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the synthesis, see: Jeyaraman et al. (1995 [triangle]); Ponnuswamy et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2885-scheme1.jpg

Experimental

Crystal data

  • C21H26N2O3
  • M r = 354.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2885-efi1.jpg
  • a = 10.5190 (3) Å
  • b = 13.3480 (4) Å
  • c = 15.0472 (4) Å
  • α = 102.118 (2)°
  • β = 93.662 (2)°
  • γ = 110.287 (2)°
  • V = 1915.89 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.25 × 0.23 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.980, T max = 0.984
  • 46036 measured reflections
  • 10328 independent reflections
  • 6341 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.149
  • S = 1.03
  • 10328 reflections
  • 495 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043311/ci2933sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043311/ci2933Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection, and the management of Kandaswami Kandar’s College, Velur, Namakkal, Tamil Nadu, for the encouragement to pursue the programme. SS thanks the UGC for a fellowship under the Rajiv Gandhi National Fellowship Scheme.

supplementary crystallographic information

Comment

1,4-Diazepines are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998). Various substituted diazepan-5-ones have been synthesized using Schmidt rearrangement from the corresponding piperdin-4-ones and their stereochemistry has been reported (Senthil Kumar et al., 1992; Jeyaraman & Ponnuswamy, 1997). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound, namely t-3-ethyl-r-2,c-7-bis(4-methoxyphenyl)-1,4-diazepan-5-one, was carried out.

In the title compound there are two crystallographically independent molecules in the asymmetric unit (Fig. 1). The diazepine ring in both molecules adopt chair conformation, with puckering (Cremer & Pople, 1975) and asymmetry (Nardelli, 1983) parameters q2 = 0.359 (2)Å, q3 = 0.702 (2)Å, [var phi]2 = 132.2 (3)°, [var phi]3 =102.1 (1)° and Δs(N5A)= 0.017 (1)° for molecule A, and q2 = 0.378 (2) Å, q3 = 0.667 (2) Å, [var phi]2 = -47.3 (3)°, [var phi]3 =-75.9 (2)° and Δs(N5B) = 0.022 (1)° for molecule B. The sum of bond angles around atoms N1A (359.9°) and N1B (359.6°) of the diazepine rings indicate sp2-hybridization, whereas the other N atoms [N5A (331.4°) and N5B (333.2°)] are sp3-hybridized.

In the crystal, independent molecules are linked by intermolecular N—H···O hydrogen bonds forming R22(8) dimers. The adajacent centrosymmetric dimeric units are linked via N—H···O hydrogen bonds into a tetrameric unit with an R22(16) ring motif (Bernstein et al. 1995). The tetramers are linked via C—H···O hydrogen bonds (Table 1).

Experimental

In a typical reaction, t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one was first converted into its hydrochloride and then dry, powdered t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one hydrochloride (3.1 g) was added, in portions, to cold conc. H2SO4 (12.5 ml). The temperature of the solution was allowed to rise to 25°C and NaN3(0.75 g) was added in portions with vigorous stirring. The solution was poured into crushed ice and cold NaOH solution (2 N) was added slowly with stirring until the pH was 8. The separated white solid was filtered and crystallized using methanol (Jeyaraman et al., 1995; Ponnuswamy et al., 2006).

Refinement

In one of the molecules in the asymmetric unit, the C atom of the ethyl group is disordered over two positions (C23B/C23C) with refined occupancies of 0.742 (4)and 0.258 (4). N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C21H26N2O3Z = 4
Mr = 354.44F(000) = 760
Triclinic, P1Dx = 1.229 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5190 (3) ÅCell parameters from 4523 reflections
b = 13.3480 (4) Åθ = 1.4–29.2°
c = 15.0472 (4) ŵ = 0.08 mm1
α = 102.118 (2)°T = 293 K
β = 93.662 (2)°Block, colourless
γ = 110.287 (2)°0.25 × 0.23 × 0.20 mm
V = 1915.89 (9) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer10328 independent reflections
Radiation source: fine-focus sealed tube6341 reflections with I > 2σ(I)
graphiteRint = 0.026
ω and [var phi] scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −14→14
Tmin = 0.980, Tmax = 0.984k = −17→18
46036 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.06P)2 + 0.383P] where P = (Fo2 + 2Fc2)/3
10328 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O1A−0.01838 (15)0.04649 (10)0.27923 (10)0.0830 (4)
O2A0.37857 (13)−0.20475 (10)−0.10577 (10)0.0756 (4)
O3A0.69336 (15)0.71516 (11)0.19087 (10)0.0811 (4)
N1A0.09646 (14)0.22089 (11)0.27464 (10)0.0560 (3)
H1A0.0770 (18)0.2418 (15)0.3299 (13)0.066 (5)*
N5A0.31252 (13)0.21527 (10)0.14281 (8)0.0475 (3)
H5A0.3987 (18)0.2259 (14)0.1300 (12)0.060 (5)*
C2A0.05133 (16)0.11262 (14)0.23888 (12)0.0573 (4)
C3A0.09336 (15)0.07227 (13)0.14921 (12)0.0549 (4)
H3A0.06200.10290.10310.066*
H3B0.0490−0.00730.12960.066*
C4A0.24839 (15)0.10354 (12)0.15489 (10)0.0462 (3)
H4A0.28500.10200.21590.055*
C6A0.32146 (15)0.30438 (12)0.22233 (10)0.0475 (3)
H6A0.35760.28960.27780.057*
C7A0.17771 (16)0.30792 (13)0.23321 (11)0.0515 (4)
H7A0.12920.29660.17200.062*
C8A0.28292 (14)0.02316 (12)0.08376 (10)0.0443 (3)
C9A0.35352 (16)−0.03896 (13)0.10915 (12)0.0533 (4)
H9A0.3810−0.03030.17120.064*
C10A0.38390 (17)−0.11330 (14)0.04443 (13)0.0595 (4)
H10A0.4327−0.15340.06300.071*
C11A0.34280 (15)−0.12864 (13)−0.04710 (12)0.0546 (4)
C12A0.27102 (17)−0.06915 (15)−0.07426 (12)0.0604 (4)
H12A0.2418−0.0795−0.13630.072*
C13A0.24249 (17)0.00635 (14)−0.00872 (11)0.0553 (4)
H13A0.19460.0470−0.02760.066*
C14A0.3381 (3)−0.2238 (2)−0.20034 (18)0.1147 (10)
H14A0.3690−0.2786−0.23350.172*
H14B0.3775−0.1565−0.21910.172*
H14C0.2399−0.2494−0.21320.172*
C15A0.42113 (16)0.41145 (12)0.20960 (10)0.0486 (3)
C16A0.40863 (19)0.44723 (14)0.13156 (12)0.0626 (4)
H16A0.33840.40280.08370.075*
C17A0.4976 (2)0.54759 (15)0.12202 (13)0.0652 (5)
H17A0.48670.56980.06840.078*
C18A0.60159 (18)0.61386 (13)0.19175 (12)0.0584 (4)
C19A0.6171 (2)0.57884 (16)0.26968 (14)0.0773 (6)
H19A0.68820.62270.31710.093*
C20A0.52801 (19)0.47928 (15)0.27791 (12)0.0677 (5)
H20A0.54020.45690.33130.081*
C21A0.6824 (3)0.75565 (19)0.11292 (18)0.0952 (7)
H21A0.75290.82710.12180.143*
H21B0.59420.76130.10380.143*
H21C0.69260.70620.05990.143*
C22A0.18238 (19)0.41711 (14)0.29253 (14)0.0676 (5)
H22A0.22360.42640.35470.081*
H22B0.24040.47680.26910.081*
C23A0.0429 (2)0.42506 (18)0.29508 (18)0.0889 (7)
H23A0.05230.49520.33350.133*
H23B−0.01460.36710.31950.133*
H23C0.00240.41790.23400.133*
O1B−0.01626 (13)0.72895 (10)0.53207 (9)0.0721 (4)
O2B0.10372 (17)0.62330 (13)−0.02416 (10)0.0924 (5)
O3B0.65088 (12)1.43287 (9)0.47433 (8)0.0594 (3)
N1B0.13486 (14)0.90123 (11)0.55429 (11)0.0560 (3)
H1B0.1050 (19)0.9184 (15)0.6066 (13)0.068 (5)*
N5B0.22122 (13)0.94024 (10)0.36776 (10)0.0496 (3)
H5B0.2177 (18)0.9690 (15)0.3198 (13)0.063 (5)*
C2B0.07613 (17)0.79736 (13)0.50562 (12)0.0540 (4)
C3B0.12403 (18)0.76579 (13)0.41559 (12)0.0576 (4)
H3C0.07240.68820.38780.069*
H3D0.21970.77520.42770.069*
C4B0.10920 (15)0.83176 (12)0.34669 (11)0.0504 (4)
H4B0.02210.84290.34970.060*
C6B0.22491 (15)1.02343 (12)0.44994 (10)0.0468 (3)
H6B0.13621.03230.44870.056*
C7B0.25490 (15)0.98713 (12)0.53712 (11)0.0492 (3)
H7B0.32640.95630.52750.059*
C8B0.10992 (16)0.77287 (12)0.24925 (12)0.0537 (4)
C9B0.1949 (2)0.71538 (16)0.22746 (13)0.0682 (5)
H9B0.25320.71100.27440.082*
C10B0.1956 (2)0.66371 (16)0.13700 (14)0.0719 (5)
H10B0.25270.62440.12390.086*
C11B0.1117 (2)0.67125 (15)0.06772 (13)0.0680 (5)
C12B0.0291 (2)0.72951 (17)0.08731 (14)0.0760 (5)
H12B−0.02650.73600.03990.091*
C13B0.02760 (19)0.77921 (15)0.17759 (13)0.0663 (5)
H13B−0.03040.81780.19000.080*
C14B0.1884 (3)0.5635 (2)−0.04813 (17)0.1003 (8)
H14D0.17330.5350−0.11360.150*
H14E0.16700.5034−0.01890.150*
H14F0.28260.6111−0.02820.150*
C15B0.33542 (15)1.13087 (12)0.44774 (10)0.0443 (3)
C16B0.46146 (15)1.13398 (12)0.42465 (11)0.0494 (4)
H16B0.47421.06790.40390.059*
C17B0.56951 (15)1.23233 (12)0.43144 (11)0.0492 (4)
H17B0.65331.23210.41530.059*
C18B0.55133 (15)1.33051 (12)0.46237 (10)0.0459 (3)
C19B0.42406 (17)1.32896 (13)0.48211 (11)0.0527 (4)
H19B0.41031.39490.50060.063*
C20B0.31804 (16)1.23073 (12)0.47456 (11)0.0507 (4)
H20B0.23301.23110.48770.061*
C21B0.78088 (18)1.44055 (16)0.45013 (15)0.0722 (5)
H21D0.83951.51670.46190.108*
H21E0.77101.40590.38600.108*
H21F0.82051.40420.48600.108*
C22B0.30606 (19)1.08026 (14)0.62487 (12)0.0620 (4)
H22C0.37941.14210.61340.074*0.742 (4)
H22D0.23191.10480.64080.074*0.742 (4)
H22E0.25891.12930.61980.074*0.258 (4)
H22F0.27631.04890.67530.074*0.258 (4)
C23B0.3575 (3)1.0464 (3)0.70459 (18)0.0822 (10)0.742 (4)
H23D0.38851.10770.75770.123*0.742 (4)
H23E0.43221.02340.68970.123*0.742 (4)
H23F0.28480.98640.71730.123*0.742 (4)
C23C0.4545 (7)1.1483 (6)0.6534 (5)0.068 (2)0.258 (4)
H23G0.46671.20270.70960.102*0.258 (4)
H23H0.48891.18450.60630.102*0.258 (4)
H23I0.50351.10180.66280.102*0.258 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0985 (10)0.0547 (8)0.1012 (11)0.0234 (7)0.0645 (8)0.0241 (7)
O2A0.0739 (8)0.0588 (8)0.0864 (10)0.0250 (6)0.0276 (7)−0.0034 (7)
O3A0.0921 (9)0.0530 (8)0.0889 (10)0.0080 (7)0.0260 (7)0.0266 (7)
N1A0.0648 (8)0.0478 (8)0.0550 (9)0.0184 (6)0.0260 (7)0.0107 (7)
N5A0.0523 (7)0.0408 (7)0.0466 (7)0.0133 (5)0.0162 (5)0.0089 (5)
C2A0.0561 (9)0.0494 (10)0.0687 (11)0.0183 (7)0.0280 (8)0.0160 (8)
C3A0.0528 (8)0.0437 (9)0.0615 (10)0.0118 (7)0.0187 (7)0.0063 (7)
C4A0.0531 (8)0.0423 (8)0.0431 (8)0.0159 (6)0.0129 (6)0.0119 (6)
C6A0.0567 (8)0.0420 (8)0.0412 (8)0.0152 (6)0.0117 (6)0.0084 (6)
C7A0.0596 (9)0.0434 (8)0.0499 (9)0.0169 (7)0.0163 (7)0.0095 (7)
C8A0.0450 (7)0.0387 (8)0.0471 (8)0.0111 (6)0.0129 (6)0.0120 (6)
C9A0.0551 (8)0.0558 (10)0.0523 (9)0.0220 (7)0.0102 (7)0.0174 (8)
C10A0.0586 (9)0.0529 (10)0.0762 (12)0.0275 (8)0.0179 (8)0.0205 (9)
C11A0.0488 (8)0.0416 (8)0.0660 (11)0.0111 (6)0.0195 (7)0.0042 (7)
C12A0.0646 (10)0.0664 (11)0.0459 (9)0.0230 (8)0.0094 (7)0.0068 (8)
C13A0.0648 (9)0.0577 (10)0.0510 (10)0.0296 (8)0.0134 (7)0.0159 (8)
C14A0.1080 (18)0.125 (2)0.0847 (18)0.0541 (16)−0.0022 (13)−0.0431 (15)
C15A0.0585 (8)0.0420 (8)0.0428 (8)0.0155 (7)0.0142 (6)0.0089 (6)
C16A0.0763 (11)0.0537 (10)0.0449 (9)0.0109 (8)0.0049 (8)0.0094 (8)
C17A0.0883 (12)0.0576 (11)0.0512 (10)0.0229 (9)0.0196 (9)0.0210 (8)
C18A0.0675 (10)0.0434 (9)0.0622 (11)0.0147 (8)0.0231 (8)0.0143 (8)
C19A0.0807 (13)0.0626 (12)0.0640 (12)−0.0022 (9)−0.0042 (9)0.0181 (10)
C20A0.0776 (11)0.0576 (11)0.0542 (11)0.0061 (9)0.0004 (8)0.0204 (9)
C21A0.1160 (18)0.0734 (15)0.1049 (18)0.0265 (13)0.0362 (14)0.0492 (14)
C22A0.0770 (11)0.0491 (10)0.0749 (12)0.0227 (9)0.0280 (9)0.0076 (9)
C23A0.0942 (15)0.0698 (13)0.1167 (19)0.0453 (12)0.0381 (13)0.0194 (13)
O1B0.0800 (8)0.0529 (7)0.0832 (9)0.0148 (6)0.0376 (7)0.0258 (6)
O2B0.1108 (12)0.0802 (10)0.0665 (9)0.0231 (9)0.0147 (8)−0.0024 (8)
O3B0.0658 (7)0.0392 (6)0.0676 (7)0.0129 (5)0.0154 (5)0.0112 (5)
N1B0.0653 (8)0.0476 (8)0.0605 (9)0.0214 (6)0.0301 (7)0.0177 (7)
N5B0.0601 (7)0.0386 (7)0.0484 (8)0.0145 (6)0.0134 (6)0.0120 (6)
C2B0.0598 (9)0.0456 (9)0.0641 (10)0.0216 (7)0.0227 (8)0.0215 (8)
C3B0.0705 (10)0.0409 (9)0.0645 (11)0.0209 (7)0.0219 (8)0.0152 (8)
C4B0.0514 (8)0.0403 (8)0.0585 (10)0.0154 (6)0.0135 (7)0.0113 (7)
C6B0.0494 (8)0.0399 (8)0.0538 (9)0.0192 (6)0.0131 (6)0.0109 (7)
C7B0.0538 (8)0.0450 (8)0.0533 (9)0.0208 (7)0.0177 (7)0.0145 (7)
C8B0.0566 (9)0.0382 (8)0.0609 (10)0.0109 (7)0.0135 (7)0.0106 (7)
C9B0.0811 (12)0.0688 (12)0.0627 (12)0.0358 (10)0.0182 (9)0.0166 (9)
C10B0.0887 (13)0.0601 (11)0.0725 (13)0.0326 (10)0.0285 (10)0.0140 (10)
C11B0.0781 (12)0.0481 (10)0.0606 (12)0.0072 (9)0.0114 (9)0.0046 (8)
C12B0.0767 (12)0.0727 (13)0.0662 (13)0.0204 (10)−0.0025 (9)0.0075 (10)
C13B0.0665 (10)0.0561 (11)0.0683 (12)0.0195 (8)0.0042 (9)0.0058 (9)
C14B0.127 (2)0.0764 (15)0.0827 (16)0.0288 (14)0.0348 (14)−0.0023 (12)
C15B0.0538 (8)0.0387 (8)0.0440 (8)0.0205 (6)0.0127 (6)0.0104 (6)
C16B0.0554 (8)0.0367 (8)0.0592 (9)0.0219 (6)0.0152 (7)0.0075 (7)
C17B0.0510 (8)0.0453 (9)0.0531 (9)0.0201 (7)0.0137 (6)0.0100 (7)
C18B0.0585 (8)0.0376 (8)0.0404 (8)0.0157 (6)0.0089 (6)0.0101 (6)
C19B0.0702 (10)0.0384 (8)0.0578 (10)0.0280 (7)0.0199 (7)0.0126 (7)
C20B0.0579 (8)0.0462 (9)0.0578 (10)0.0275 (7)0.0209 (7)0.0156 (7)
C21B0.0618 (10)0.0541 (11)0.0878 (14)0.0083 (8)0.0136 (9)0.0122 (10)
C22B0.0760 (11)0.0541 (10)0.0546 (10)0.0226 (8)0.0163 (8)0.0113 (8)
C23B0.114 (2)0.096 (2)0.0519 (16)0.0624 (19)0.0119 (14)0.0102 (14)
C23C0.058 (4)0.066 (5)0.070 (5)0.020 (3)0.006 (3)0.002 (4)

Geometric parameters (Å, °)

O1A—C2A1.2323 (19)O3B—C21B1.413 (2)
O2A—C11A1.3725 (19)N1B—C2B1.328 (2)
O2A—C14A1.402 (3)N1B—C7B1.4621 (19)
O3A—C18A1.365 (2)N1B—H1B0.881 (19)
O3A—C21A1.405 (3)N5B—C6B1.4667 (19)
N1A—C2A1.330 (2)N5B—C4B1.4704 (19)
N1A—C7A1.467 (2)N5B—H5B0.890 (19)
N1A—H1A0.881 (19)C2B—C3B1.504 (2)
N5A—C4A1.4642 (19)C3B—C4B1.527 (2)
N5A—C6A1.4717 (19)C3B—H3C0.97
N5A—H5A0.908 (17)C3B—H3D0.97
C2A—C3A1.498 (2)C4B—C8B1.513 (2)
C3A—C4A1.528 (2)C4B—H4B0.98
C3A—H3A0.97C6B—C15B1.509 (2)
C3A—H3B0.97C6B—C7B1.541 (2)
C4A—C8A1.506 (2)C6B—H6B0.98
C4A—H4A0.98C7B—C22B1.528 (2)
C6A—C15A1.510 (2)C7B—H7B0.98
C6A—C7A1.547 (2)C8B—C13B1.375 (2)
C6A—H6A0.98C8B—C9B1.380 (2)
C7A—C22A1.524 (2)C9B—C10B1.393 (3)
C7A—H7A0.98C9B—H9B0.93
C8A—C13A1.376 (2)C10B—C11B1.366 (3)
C8A—C9A1.382 (2)C10B—H10B0.93
C9A—C10A1.375 (2)C11B—C12B1.361 (3)
C9A—H9A0.93C12B—C13B1.385 (3)
C10A—C11A1.367 (3)C12B—H12B0.93
C10A—H10A0.93C13B—H13B0.93
C11A—C12A1.371 (2)C14B—H14D0.96
C12A—C13A1.381 (2)C14B—H14E0.96
C12A—H12A0.93C14B—H14F0.96
C13A—H13A0.93C15B—C16B1.381 (2)
C14A—H14A0.96C15B—C20B1.388 (2)
C14A—H14B0.96C16B—C17B1.386 (2)
C14A—H14C0.96C16B—H16B0.93
C15A—C16A1.372 (2)C17B—C18B1.378 (2)
C15A—C20A1.377 (2)C17B—H17B0.93
C16A—C17A1.386 (2)C18B—C19B1.384 (2)
C16A—H16A0.93C19B—C20B1.372 (2)
C17A—C18A1.368 (3)C19B—H19B0.93
C17A—H17A0.93C20B—H20B0.93
C18A—C19A1.371 (3)C21B—H21D0.96
C19A—C20A1.371 (2)C21B—H21E0.96
C19A—H19A0.93C21B—H21F0.96
C20A—H20A0.93C22B—C23C1.488 (7)
C21A—H21A0.96C22B—C23B1.500 (3)
C21A—H21B0.96C22B—H22C0.97
C21A—H21C0.96C22B—H22D0.97
C22A—C23A1.510 (3)C22B—H22E0.96
C22A—H22A0.97C22B—H22F0.96
C22A—H22B0.97C23B—H22F0.95
C23A—H23A0.96C23B—H23D0.96
C23A—H23B0.96C23B—H23E0.96
C23A—H23C0.96C23B—H23F0.96
O1B—C2B1.2341 (18)C23C—H23G0.96
O2B—C11B1.380 (2)C23C—H23H0.96
O2B—C14B1.405 (3)C23C—H23I0.96
O3B—C18B1.3698 (18)
C11A—O2A—C14A117.77 (17)C4B—C3B—H3C108.6
C18A—O3A—C21A118.48 (17)C2B—C3B—H3D108.6
C2A—N1A—C7A127.11 (14)C4B—C3B—H3D108.6
C2A—N1A—H1A115.7 (12)H3C—C3B—H3D107.6
C7A—N1A—H1A117.1 (12)N5B—C4B—C8B107.49 (12)
C4A—N5A—C6A115.07 (11)N5B—C4B—C3B111.39 (14)
C4A—N5A—H5A109.4 (11)C8B—C4B—C3B112.06 (13)
C6A—N5A—H5A107.9 (11)N5B—C4B—H4B108.6
O1A—C2A—N1A121.74 (15)C8B—C4B—H4B108.6
O1A—C2A—C3A120.31 (15)C3B—C4B—H4B108.6
N1A—C2A—C3A117.89 (14)N5B—C6B—C15B107.71 (11)
C2A—C3A—C4A112.81 (14)N5B—C6B—C7B110.00 (12)
C2A—C3A—H3A109.0C15B—C6B—C7B110.86 (12)
C4A—C3A—H3A109.0N5B—C6B—H6B109.4
C2A—C3A—H3B109.0C15B—C6B—H6B109.4
C4A—C3A—H3B109.0C7B—C6B—H6B109.4
H3A—C3A—H3B107.8N1B—C7B—C22B107.11 (13)
N5A—C4A—C8A109.97 (11)N1B—C7B—C6B112.21 (13)
N5A—C4A—C3A110.15 (12)C22B—C7B—C6B114.44 (13)
C8A—C4A—C3A111.13 (12)N1B—C7B—H7B107.6
N5A—C4A—H4A108.5C22B—C7B—H7B107.6
C8A—C4A—H4A108.5C6B—C7B—H7B107.6
C3A—C4A—H4A108.5C13B—C8B—C9B117.20 (17)
N5A—C6A—C15A108.36 (11)C13B—C8B—C4B119.98 (15)
N5A—C6A—C7A110.41 (12)C9B—C8B—C4B122.77 (16)
C15A—C6A—C7A112.49 (12)C8B—C9B—C10B121.68 (19)
N5A—C6A—H6A108.5C8B—C9B—H9B119.2
C15A—C6A—H6A108.5C10B—C9B—H9B119.2
C7A—C6A—H6A108.5C11B—C10B—C9B119.39 (18)
N1A—C7A—C22A106.99 (13)C11B—C10B—H10B120.3
N1A—C7A—C6A111.92 (13)C9B—C10B—H10B120.3
C22A—C7A—C6A113.26 (13)C12B—C11B—C10B120.02 (18)
N1A—C7A—H7A108.2C12B—C11B—O2B115.65 (19)
C22A—C7A—H7A108.2C10B—C11B—O2B124.33 (19)
C6A—C7A—H7A108.2C11B—C12B—C13B120.16 (19)
C13A—C8A—C9A117.36 (14)C11B—C12B—H12B119.9
C13A—C8A—C4A121.57 (14)C13B—C12B—H12B119.9
C9A—C8A—C4A121.05 (14)C8B—C13B—C12B121.54 (18)
C10A—C9A—C8A121.20 (16)C8B—C13B—H13B119.2
C10A—C9A—H9A119.4C12B—C13B—H13B119.2
C8A—C9A—H9A119.4O2B—C14B—H14D109.5
C11A—C10A—C9A120.46 (15)O2B—C14B—H14E109.5
C11A—C10A—H10A119.8H14D—C14B—H14E109.5
C9A—C10A—H10A119.8O2B—C14B—H14F109.5
C10A—C11A—C12A119.60 (15)H14D—C14B—H14F109.5
C10A—C11A—O2A115.66 (16)H14E—C14B—H14F109.5
C12A—C11A—O2A124.74 (17)C16B—C15B—C20B117.40 (14)
C11A—C12A—C13A119.48 (16)C16B—C15B—C6B120.88 (12)
C11A—C12A—H12A120.3C20B—C15B—C6B121.58 (13)
C13A—C12A—H12A120.3C15B—C16B—C17B122.12 (13)
C8A—C13A—C12A121.89 (15)C15B—C16B—H16B118.9
C8A—C13A—H13A119.1C17B—C16B—H16B118.9
C12A—C13A—H13A119.1C18B—C17B—C16B119.22 (13)
O2A—C14A—H14A109.5C18B—C17B—H17B120.4
O2A—C14A—H14B109.5C16B—C17B—H17B120.4
H14A—C14A—H14B109.5O3B—C18B—C17B124.78 (14)
O2A—C14A—H14C109.5O3B—C18B—C19B115.76 (13)
H14A—C14A—H14C109.5C17B—C18B—C19B119.45 (14)
H14B—C14A—H14C109.5C20B—C19B—C18B120.45 (13)
C16A—C15A—C20A116.87 (15)C20B—C19B—H19B119.8
C16A—C15A—C6A122.38 (14)C18B—C19B—H19B119.8
C20A—C15A—C6A120.73 (14)C19B—C20B—C15B121.22 (14)
C15A—C16A—C17A121.91 (16)C19B—C20B—H20B119.4
C15A—C16A—H16A119.0C15B—C20B—H20B119.4
C17A—C16A—H16A119.0O3B—C21B—H21D109.5
C18A—C17A—C16A119.78 (17)O3B—C21B—H21E109.5
C18A—C17A—H17A120.1H21D—C21B—H21E109.5
C16A—C17A—H17A120.1O3B—C21B—H21F109.5
O3A—C18A—C17A124.94 (17)H21D—C21B—H21F109.5
O3A—C18A—C19A115.86 (16)H21E—C21B—H21F109.5
C17A—C18A—C19A119.20 (16)C23C—C22B—C23B71.7 (3)
C18A—C19A—C20A120.19 (17)C23C—C22B—C7B121.4 (3)
C18A—C19A—H19A119.9C23B—C22B—C7B112.83 (17)
C20A—C19A—H19A119.9C23C—C22B—H22C37.5
C19A—C20A—C15A122.03 (17)C23B—C22B—H22C109.0
C19A—C20A—H20A119.0C7B—C22B—H22C109.0
C15A—C20A—H20A119.0C23C—C22B—H22D124.9
O3A—C21A—H21A109.5C23B—C22B—H22D109.0
O3A—C21A—H21B109.5C7B—C22B—H22D109.0
H21A—C21A—H21B109.5H22C—C22B—H22D107.8
O3A—C21A—H21C109.5C23C—C22B—H22E107.6
H21A—C21A—H21C109.5C23B—C22B—H22E133.3
H21B—C21A—H21C109.5C7B—C22B—H22E106.7
C23A—C22A—C7A113.26 (16)H22C—C22B—H22E79.3
C23A—C22A—H22A108.9H22D—C22B—H22E31.7
C7A—C22A—H22A108.9C23C—C22B—H22F105.9
C23A—C22A—H22B108.9C23B—C22B—H22F38.0
C7A—C22A—H22B108.9C7B—C22B—H22F107.6
H22A—C22A—H22B107.7H22C—C22B—H22F139.1
C22A—C23A—H23A109.5H22D—C22B—H22F76.2
C22A—C23A—H23B109.5H22E—C22B—H22F106.8
H23A—C23A—H23B109.5C22B—C23B—H22F38.5
C22A—C23A—H23C109.5C22B—C23B—H23D109.5
H23A—C23A—H23C109.5H22F—C23B—H23D105.4
H23B—C23A—H23C109.5C22B—C23B—H23E109.5
C11B—O2B—C14B117.88 (19)H22F—C23B—H23E140.1
C18B—O3B—C21B118.75 (13)H23D—C23B—H23E109.5
C2B—N1B—C7B127.36 (14)C22B—C23B—H23F109.5
C2B—N1B—H1B116.5 (12)H22F—C23B—H23F75.6
C7B—N1B—H1B115.7 (12)H23D—C23B—H23F109.5
C6B—N5B—C4B118.50 (12)H23E—C23B—H23F109.5
C6B—N5B—H5B107.2 (12)C22B—C23C—H23G109.5
C4B—N5B—H5B107.5 (12)C22B—C23C—H23H109.5
O1B—C2B—N1B121.57 (15)H23G—C23C—H23H109.5
O1B—C2B—C3B120.71 (15)C22B—C23C—H23I109.5
N1B—C2B—C3B117.70 (14)H23G—C23C—H23I109.5
C2B—C3B—C4B114.62 (13)H23H—C23C—H23I109.5
C2B—C3B—H3C108.6
C7A—N1A—C2A—O1A−178.83 (17)C7B—N1B—C2B—C3B−8.9 (3)
C7A—N1A—C2A—C3A4.0 (3)O1B—C2B—C3B—C4B120.58 (17)
O1A—C2A—C3A—C4A−115.07 (19)N1B—C2B—C3B—C4B−58.2 (2)
N1A—C2A—C3A—C4A62.1 (2)C6B—N5B—C4B—C8B166.79 (13)
C6A—N5A—C4A—C8A−162.77 (12)C6B—N5B—C4B—C3B−70.10 (17)
C6A—N5A—C4A—C3A74.42 (16)C2B—C3B—C4B—N5B79.81 (17)
C2A—C3A—C4A—N5A−84.26 (16)C2B—C3B—C4B—C8B−159.73 (14)
C2A—C3A—C4A—C8A153.62 (14)C4B—N5B—C6B—C15B−171.56 (13)
C4A—N5A—C6A—C15A165.11 (12)C4B—N5B—C6B—C7B67.51 (17)
C4A—N5A—C6A—C7A−71.27 (16)C2B—N1B—C7B—C22B−164.28 (16)
C2A—N1A—C7A—C22A170.41 (17)C2B—N1B—C7B—C6B69.3 (2)
C2A—N1A—C7A—C6A−65.0 (2)N5B—C6B—C7B—N1B−76.30 (15)
N5A—C6A—C7A—N1A77.41 (16)C15B—C6B—C7B—N1B164.68 (12)
C15A—C6A—C7A—N1A−161.40 (13)N5B—C6B—C7B—C22B161.37 (13)
N5A—C6A—C7A—C22A−161.54 (14)C15B—C6B—C7B—C22B42.35 (17)
C15A—C6A—C7A—C22A−40.34 (19)N5B—C4B—C8B—C13B−93.95 (17)
N5A—C4A—C8A—C13A−62.46 (18)C3B—C4B—C8B—C13B143.35 (16)
C3A—C4A—C8A—C13A59.77 (19)N5B—C4B—C8B—C9B83.29 (19)
N5A—C4A—C8A—C9A119.32 (15)C3B—C4B—C8B—C9B−39.4 (2)
C3A—C4A—C8A—C9A−118.45 (16)C13B—C8B—C9B—C10B−1.4 (3)
C13A—C8A—C9A—C10A1.0 (2)C4B—C8B—C9B—C10B−178.68 (16)
C4A—C8A—C9A—C10A179.28 (14)C8B—C9B—C10B—C11B1.0 (3)
C8A—C9A—C10A—C11A−1.0 (2)C9B—C10B—C11B—C12B0.5 (3)
C9A—C10A—C11A—C12A0.1 (2)C9B—C10B—C11B—O2B−179.86 (17)
C9A—C10A—C11A—O2A179.98 (14)C14B—O2B—C11B—C12B179.14 (19)
C14A—O2A—C11A—C10A179.67 (18)C14B—O2B—C11B—C10B−0.5 (3)
C14A—O2A—C11A—C12A−0.5 (3)C10B—C11B—C12B—C13B−1.5 (3)
C10A—C11A—C12A—C13A0.7 (2)O2B—C11B—C12B—C13B178.86 (17)
O2A—C11A—C12A—C13A−179.17 (15)C9B—C8B—C13B—C12B0.4 (3)
C9A—C8A—C13A—C12A−0.2 (2)C4B—C8B—C13B—C12B177.77 (16)
C4A—C8A—C13A—C12A−178.45 (14)C11B—C12B—C13B—C8B1.0 (3)
C11A—C12A—C13A—C8A−0.7 (3)N5B—C6B—C15B—C16B−43.91 (19)
N5A—C6A—C15A—C16A53.58 (19)C7B—C6B—C15B—C16B76.49 (17)
C7A—C6A—C15A—C16A−68.77 (19)N5B—C6B—C15B—C20B140.46 (15)
N5A—C6A—C15A—C20A−127.96 (17)C7B—C6B—C15B—C20B−99.15 (16)
C7A—C6A—C15A—C20A109.69 (18)C20B—C15B—C16B—C17B2.8 (2)
C20A—C15A—C16A—C17A−1.0 (3)C6B—C15B—C16B—C17B−173.01 (14)
C6A—C15A—C16A—C17A177.51 (16)C15B—C16B—C17B—C18B0.1 (2)
C15A—C16A—C17A—C18A0.1 (3)C21B—O3B—C18B—C17B2.8 (2)
C21A—O3A—C18A—C17A−0.3 (3)C21B—O3B—C18B—C19B−176.19 (15)
C21A—O3A—C18A—C19A−179.81 (19)C16B—C17B—C18B—O3B178.24 (14)
C16A—C17A—C18A—O3A−178.51 (17)C16B—C17B—C18B—C19B−2.8 (2)
C16A—C17A—C18A—C19A0.9 (3)O3B—C18B—C19B—C20B−178.41 (14)
O3A—C18A—C19A—C20A178.55 (18)C17B—C18B—C19B—C20B2.6 (2)
C17A—C18A—C19A—C20A−0.9 (3)C18B—C19B—C20B—C15B0.4 (2)
C18A—C19A—C20A—C15A0.0 (3)C16B—C15B—C20B—C19B−3.1 (2)
C16A—C15A—C20A—C19A1.0 (3)C6B—C15B—C20B—C19B172.70 (14)
C6A—C15A—C20A—C19A−177.55 (18)N1B—C7B—C22B—C23C146.9 (4)
N1A—C7A—C22A—C23A−62.2 (2)C6B—C7B—C22B—C23C−88.0 (4)
C6A—C7A—C22A—C23A173.98 (16)N1B—C7B—C22B—C23B65.1 (2)
C7B—N1B—C2B—O1B172.26 (16)C6B—C7B—C22B—C23B−169.84 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Bi0.88 (2)2.21 (2)3.0833 (19)172 (2)
N1B—H1B···O1Ai0.88 (2)2.04 (2)2.9179 (18)175 (2)
N5A—H5A···O2Aii0.91 (2)2.49 (2)3.3769 (18)164 (2)
C19B—H19B···O3Biii0.932.563.477 (2)171
C20A—H20A···O3Biv0.932.513.410 (2)162
C20B—H20B···O1Bv0.932.533.398 (2)156

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z; (iii) −x+1, −y+3, −z+1; (iv) x, y−1, z; (v) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2933).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett.8, 619–624. [PubMed]
  • Jeyaraman, R. & Ponnuswamy, S. (1997). J. Org. Chem.62, 7984–7990. [PubMed]
  • Jeyaraman, R., Senthil Kumar, U. P. & Bigler, P. (1995). J. Org. Chem.60, 7461–7470.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Ponnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathi, V. (2006). Indian J. Chem. Sect. B, 45, 2059–2070.
  • Senthil Kumar, U. P., Jeyaraman, R., Murray, R. W. & Singh, M. (1992). J. Org. Chem.57, 6006–6014.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography