PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2739.
Published online 2009 October 17. doi:  10.1107/S160053680904121X
PMCID: PMC2971067

3-Anilino-1,3-di-2-pyridylpropan-1-one

Abstract

The title compound, C19H17N3O, was prepared by the 1,4-addition reaction of 1,3-di-2-pyridylprop-2-en-1-one with aniline, and includes one chiral C atom of the methine group with an R configuration. The crystal structure is stabilized by inter­molecular N—H(...)N and C—H(...)O hydrogen bonds. The crystal structure also exhibits weak inter­molecular C—H(...)π inter­actions between a pyridyl H atom and the phenyl ring of adjacent mol­ecules.

Related literature

For properties of binucleating ligand coordination compounds, see: Casalino et al. (2009 [triangle]); Clare et al. (2004 [triangle]); Lam et al. (1996 [triangle]). For multiple pyridyl compounds, see: Huang et al. (2008 [triangle]). For related structures, see: Champouret et al. (2006 [triangle]); Murthy et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2739-scheme1.jpg

Experimental

Crystal data

  • C19H17N3O
  • M r = 303.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2739-efi9.jpg
  • a = 9.316 (2) Å
  • b = 10.275 (2) Å
  • c = 16.652 (3) Å
  • V = 1594.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.35 × 0.30 × 0.24 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick (2000 [triangle]) T min = 0.950, T max = 0.976
  • 7562 measured reflections
  • 1961 independent reflections
  • 1040 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.118
  • S = 1.00
  • 1961 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904121X/lx2115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904121X/lx2115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The binucleating ligand has continued to arouse interest among chemists, because the extensive investigation of binucleating ligands plays a key role in bimetallic chemistry. These coordination compounds were potentially applied in bioinorganic chemistry, homogeneous catalysis, magnetic exchange processes, and information of performance on important enzymes (Lam et al., 1996, Clare et al., 2004 & Casalino et al., 2009). Furthermore, compounds comprising multiple pyridyl groups are widely used in the design and self-assembly of metal-organic architectures (Huang et al., 2008). Here we report the crystal structure of title compound (I) (Fig. 1).

The bond distances and angles in (I) are consistent with the values in related structures (Champouret et al., 2006 & Murthy et al., 2001). The chiral C8 atom possesses the expected R configuaration. The molecualr packing (Fig. 2) is stabiized by intermolecular N—H···N and C—H···O hydrogen bonds; the first between the amino H atom and the pyridyl (C9–C13/N2) N atom, with a N3—H3···N2i, the second between the pyridyl (C9–C13/N2) H atom and the oxygen of the C═O unit, with a C10—H10···O1i, respectively (Table 1). The crystal packing (Fig. 3) is further stabilized by intermolecular C—H···π interactions between the pyridyl (C1–C5/N1) H atom and the phenyl ring, with a C3—H3···Cgii (Table 1; Cg is the centroid of the C14–C19 phenyl ring).

Experimental

1,3-di-2-pyridyl-2-en-1-one (5 mmol/1.044 g) was mixed with aniline (6 mmol/0.558 g) in toluene (20 ml). And then the phosphotungsitic (0.01 g) in water (10 ml) was added dropwise and refluxed for 2 h. The insoluble materials were produced, and then removed by filtration. The organic layer was kept at room temperature for about two days. Yellow-colored and block shaped crystals were collected (yield 67.6%).

Refinement

All the Friedel pairs were merged. H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
Fig. 2.
C—H···O and N—H···N hydrogen bonds (dotted lines) in the title compound. [Symmetry codes: (i) - x + 1 , y - 1/2, - z + 3/2; (iii) - x + 1, y + 1/2, - z + 3/2.]
Fig. 3.
C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (ii) x + 1/2, - y + 1/2, - z + 1; (iv) - x + 1/2, - y, z + 1/2.]

Crystal data

C19H17N3ODx = 1.264 Mg m3
Mr = 303.36Melting point: 400 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2abCell parameters from 1025 reflections
a = 9.316 (2) Åθ = 2.3–27.0°
b = 10.275 (2) ŵ = 0.08 mm1
c = 16.652 (3) ÅT = 293 K
V = 1594.0 (5) Å3Block, yellow
Z = 40.35 × 0.30 × 0.24 mm
F(000) = 640

Data collection

Bruker SMART CCD diffractometer1961 independent reflections
Radiation source: fine-focus sealed tube1040 reflections with I > 2σ(I)
graphiteRint = 0.077
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.3°
[var phi] and ω scansh = −11→10
Absorption correction: multi-scan (SADABS; Sheldrick (2000)k = −13→13
Tmin = 0.950, Tmax = 0.976l = −13→21
7562 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.118H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0005P)2 + 0.0531P] where P = (Fo2 + 2Fc2)/3
1961 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5253 (4)0.4411 (3)0.5808 (2)0.0934 (11)
N10.6804 (4)0.1340 (3)0.5653 (2)0.0659 (9)
N20.6078 (3)0.4744 (3)0.8480 (2)0.0551 (8)
N30.3789 (3)0.2540 (3)0.7351 (2)0.0628 (9)
H3N0.39710.18510.70760.075*
C10.7052 (5)0.0421 (5)0.5109 (3)0.0828 (14)
H10.7626−0.02770.52600.099*
C20.6530 (5)0.0426 (5)0.4350 (3)0.0841 (14)
H20.6734−0.02520.39970.101*
C30.5700 (5)0.1446 (5)0.4115 (3)0.0754 (13)
H30.53240.14800.35980.090*
C40.5428 (5)0.2424 (4)0.4655 (3)0.0693 (12)
H40.48680.31350.45080.083*
C50.5998 (4)0.2338 (3)0.5418 (2)0.0531 (10)
C60.5753 (4)0.3385 (4)0.6019 (3)0.0612 (11)
C70.6147 (4)0.3152 (4)0.6885 (2)0.0614 (11)
H7A0.69770.36770.70210.074*
H7B0.64050.22450.69560.074*
C80.4910 (4)0.3490 (3)0.7454 (2)0.0512 (10)
H80.45270.43400.72930.061*
C90.5452 (4)0.3607 (3)0.8309 (2)0.0493 (9)
C100.5356 (4)0.2627 (4)0.8858 (3)0.0660 (11)
H100.49120.18460.87260.079*
C110.5924 (5)0.2811 (5)0.9609 (3)0.0828 (14)
H11A0.58570.21560.99920.099*
C120.6590 (5)0.3961 (6)0.9794 (3)0.0842 (15)
H120.70000.41011.02960.101*
C130.6627 (4)0.4886 (4)0.9215 (3)0.0701 (13)
H130.70650.56740.93390.084*
C140.2431 (4)0.2689 (3)0.7675 (2)0.0504 (9)
C150.1444 (4)0.1682 (3)0.7591 (2)0.0552 (10)
H150.17200.09070.73480.066*
C160.0075 (5)0.1827 (4)0.7863 (3)0.0652 (11)
H16−0.05740.11490.77940.078*
C17−0.0373 (4)0.2942 (4)0.8235 (3)0.0654 (11)
H17−0.13120.30270.84170.078*
C180.0597 (4)0.3928 (4)0.8330 (3)0.0611 (11)
H180.03120.46900.85860.073*
C190.2000 (4)0.3816 (3)0.8054 (2)0.0545 (10)
H190.26440.44980.81240.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.135 (3)0.0631 (17)0.082 (2)0.0240 (19)−0.001 (2)0.0020 (17)
N10.071 (2)0.067 (2)0.060 (2)0.0110 (19)−0.0054 (18)−0.008 (2)
N20.0545 (19)0.0534 (19)0.057 (2)−0.0029 (16)0.0051 (16)−0.0056 (17)
N30.0509 (19)0.0561 (19)0.082 (2)−0.0027 (16)0.0062 (17)−0.0321 (19)
C10.098 (4)0.081 (3)0.069 (3)0.023 (3)−0.011 (3)−0.011 (3)
C20.096 (4)0.083 (3)0.073 (3)0.008 (3)0.002 (3)−0.020 (3)
C30.094 (4)0.082 (3)0.050 (3)−0.007 (3)0.007 (2)0.000 (3)
C40.084 (3)0.066 (3)0.057 (3)−0.002 (2)0.002 (2)0.019 (2)
C50.055 (2)0.047 (2)0.057 (3)−0.005 (2)0.0043 (19)0.008 (2)
C60.066 (3)0.056 (2)0.062 (3)0.001 (2)0.006 (2)0.002 (2)
C70.064 (3)0.065 (2)0.055 (3)0.002 (2)0.005 (2)−0.009 (2)
C80.050 (2)0.0438 (19)0.060 (3)−0.0032 (18)0.0016 (18)−0.0048 (19)
C90.046 (2)0.0425 (19)0.060 (2)0.0001 (18)0.0037 (19)−0.002 (2)
C100.068 (3)0.052 (2)0.077 (3)0.001 (2)0.009 (2)0.012 (2)
C110.091 (4)0.087 (3)0.069 (3)0.028 (3)0.015 (3)0.028 (3)
C120.084 (4)0.110 (4)0.058 (3)0.025 (3)−0.007 (3)−0.008 (3)
C130.063 (3)0.076 (3)0.071 (3)−0.001 (2)0.002 (2)−0.021 (3)
C140.052 (2)0.046 (2)0.054 (2)0.0035 (18)−0.0036 (19)−0.007 (2)
C150.060 (3)0.048 (2)0.058 (2)−0.001 (2)−0.002 (2)−0.0083 (19)
C160.064 (3)0.064 (3)0.068 (3)−0.013 (2)0.005 (2)0.001 (2)
C170.050 (2)0.079 (3)0.067 (3)0.009 (2)0.006 (2)0.000 (2)
C180.065 (3)0.059 (2)0.059 (3)0.015 (2)−0.003 (2)−0.005 (2)
C190.055 (3)0.051 (2)0.058 (2)0.0027 (18)−0.006 (2)−0.0078 (19)

Geometric parameters (Å, °)

O1—C61.205 (4)C8—C91.516 (5)
N1—C51.329 (4)C8—H80.9800
N1—C11.330 (5)C9—C101.363 (5)
N2—C131.335 (5)C10—C111.370 (7)
N2—C91.336 (4)C10—H100.9300
N3—C141.384 (4)C11—C121.370 (6)
N3—C81.440 (4)C11—H11A0.9300
N3—H3N0.8600C12—C131.354 (6)
C1—C21.354 (7)C12—H120.9300
C1—H10.9300C13—H130.9300
C2—C31.359 (6)C14—C191.379 (5)
C2—H20.9300C14—C151.390 (5)
C3—C41.372 (6)C15—C161.362 (5)
C3—H30.9300C15—H150.9300
C4—C51.380 (6)C16—C171.367 (5)
C4—H40.9300C16—H160.9300
C5—C61.487 (5)C17—C181.366 (5)
C6—C71.506 (6)C17—H170.9300
C7—C81.531 (5)C18—C191.391 (5)
C7—H7A0.9700C18—H180.9300
C7—H7B0.9700C19—H190.9300
C5—N1—C1116.4 (4)C7—C8—H8107.9
C13—N2—C9117.2 (4)N2—C9—C10122.1 (4)
C14—N3—C8122.8 (3)N2—C9—C8114.5 (3)
C14—N3—H3N118.6C10—C9—C8123.4 (3)
C8—N3—H3N118.6C9—C10—C11119.0 (4)
N1—C1—C2124.8 (5)C9—C10—H10120.5
N1—C1—H1117.6C11—C10—H10120.5
C2—C1—H1117.6C12—C11—C10119.9 (4)
C1—C2—C3118.4 (5)C12—C11—H11A120.0
C1—C2—H2120.8C10—C11—H11A120.0
C3—C2—H2120.8C13—C12—C11117.2 (4)
C2—C3—C4118.8 (4)C13—C12—H12121.4
C2—C3—H3120.6C11—C12—H12121.4
C4—C3—H3120.6N2—C13—C12124.5 (4)
C3—C4—C5119.0 (4)N2—C13—H13117.7
C3—C4—H4120.5C12—C13—H13117.7
C5—C4—H4120.5C19—C14—N3122.5 (3)
N1—C5—C4122.5 (4)C19—C14—C15118.6 (3)
N1—C5—C6116.5 (4)N3—C14—C15118.9 (3)
C4—C5—C6121.0 (4)C16—C15—C14120.3 (3)
O1—C6—C5119.8 (4)C16—C15—H15119.9
O1—C6—C7120.8 (4)C14—C15—H15119.9
C5—C6—C7119.5 (3)C15—C16—C17121.9 (4)
C6—C7—C8111.9 (3)C15—C16—H16119.0
C6—C7—H7A109.2C17—C16—H16119.0
C8—C7—H7A109.2C18—C17—C16118.1 (4)
C6—C7—H7B109.2C18—C17—H17120.9
C8—C7—H7B109.2C16—C17—H17120.9
H7A—C7—H7B107.9C17—C18—C19121.5 (4)
N3—C8—C9114.0 (3)C17—C18—H18119.3
N3—C8—C7108.5 (3)C19—C18—H18119.3
C9—C8—C7110.4 (3)C14—C19—C18119.6 (4)
N3—C8—H8107.9C14—C19—H19120.2
C9—C8—H8107.9C18—C19—H19120.2
C5—N1—C1—C2−1.0 (7)N3—C8—C9—N2−157.1 (3)
N1—C1—C2—C30.7 (8)C7—C8—C9—N280.3 (4)
C1—C2—C3—C40.0 (7)N3—C8—C9—C1024.8 (5)
C2—C3—C4—C5−0.3 (7)C7—C8—C9—C10−97.7 (4)
C1—N1—C5—C40.7 (6)N2—C9—C10—C11−0.2 (6)
C1—N1—C5—C6−178.4 (4)C8—C9—C10—C11177.7 (4)
C3—C4—C5—N1−0.1 (6)C9—C10—C11—C12−0.8 (7)
C3—C4—C5—C6179.0 (4)C10—C11—C12—C131.3 (7)
N1—C5—C6—O1167.1 (4)C9—N2—C13—C120.0 (6)
C4—C5—C6—O1−12.0 (6)C11—C12—C13—N2−0.9 (7)
N1—C5—C6—C7−12.3 (5)C8—N3—C14—C196.6 (5)
C4—C5—C6—C7168.6 (4)C8—N3—C14—C15−175.7 (3)
O1—C6—C7—C851.2 (5)C19—C14—C15—C161.5 (6)
C5—C6—C7—C8−129.4 (3)N3—C14—C15—C16−176.3 (4)
C14—N3—C8—C967.7 (4)C14—C15—C16—C17−1.0 (6)
C14—N3—C8—C7−168.8 (3)C15—C16—C17—C180.0 (6)
C6—C7—C8—N369.9 (4)C16—C17—C18—C190.6 (6)
C6—C7—C8—C9−164.4 (3)N3—C14—C19—C18176.7 (4)
C13—N2—C9—C100.6 (5)C15—C14—C19—C18−0.9 (5)
C13—N2—C9—C8−177.4 (3)C17—C18—C19—C14−0.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.353.191 (4)164
C10—H10···O1i0.932.623.398 (5)141
C3—H3···Cgii0.932.773.548 (5)142

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2115).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Casalino, M., Felice, V. D., Fraldi, N., Panunzi, A. & Ruffo, F. (2009). Inorg. Chem.48, 5913–5920. [PubMed]
  • Champouret, Y. D. M., Fawcett, J., Nodes, W. J., Singh, K. & Solan, G. A. (2006). Inorg. Chem.45, 9890–9900. [PubMed]
  • Clare, B., Sarker, N., Shoemaker, R. & Hagadorn, J. R. (2004). Inorg. Chem.43, 1159–1166. [PubMed]
  • Huang, J. S., Xie, J., Kui, S. C. F., Fang, G. S., Zhu, N. Y. & Che, C. M. (2008). Inorg. Chem.47, 5727–5735. [PubMed]
  • Lam, F., Xu, J. X. & Chan, K. S. (1996). J. Org. Chem.61, 8414–8418.
  • Murthy, N. N., Mahroof-Tahir, M. & Karlin, K. D. (2001). Inorg. Chem.40, 628–635. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography