PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1434–m1435.
Published online 2009 October 28. doi:  10.1107/S1600536809042342
PMCID: PMC2971066

Poly[[diaqua­bis(μ2-isonicotinato-κ2 N:O)bis­(μ3-isonicotinato-κ3 N:O:O′)neodymium(III)disilver(I)] nitrate monohydrate]

Abstract

In the title complex, {[Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2O}n, the NdIII ion is coordinated by eight O atoms from six isonicotinate ligands and two water mol­ecules in a distorted square anti­prismatic geometry. Each AgI ion is coordinated by two N atoms from two different isonicotinate ligands. The crystal structure exhibits a two-dimensional heterometallic polymeric layer. O—H(...)O hydrogen bonds involving the coordinated and uncoordinated water mol­ecules and intra­layer π–π inter­actions between the pyridine rings [centroid–centroid distances = 3.571 (2) and 3.569 (2) Å] are observed. Each layer inter­acts with two neighboring ones via Ag(...)O(H2O) contacts and inter­layer π–π inter­actions [centroid–centroid distances = 3.479 (3) to 3.530 (3) Å], leading to a three-dimensional supra­molecular network.

Related literature

For general background to metal organic frameworks, see: Batten & Robson (1998 [triangle]); Min & Suh (2000 [triangle]). For 4d–4f heterometallic coordination frameworks, see: Cai et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1434-scheme1.jpg

Experimental

Crystal data

  • [Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2O
  • M r = 964.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1434-efi3.jpg
  • a = 16.9648 (19) Å
  • b = 24.793 (3) Å
  • c = 6.7770 (8) Å
  • β = 95.849 (1)°
  • V = 2835.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.25 mm−1
  • T = 296 K
  • 0.23 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.522, T max = 0.592
  • 14629 measured reflections
  • 5092 independent reflections
  • 4024 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.067
  • S = 1.01
  • 5092 reflections
  • 433 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042342/hy2237sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042342/hy2237Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Key Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities for supporting this work.

supplementary crystallographic information

Comment

In recent years, assembly processes directed by metal–ligand ligation have been extensively utilized to construct metal organic frameworks with novel topologies and potentially interesting functions in magnetism, photoluminescence, sorption, catalysis (Batten & Robson, 1998; Min & Suh, 2000). However, metal-directed assembly of 4d–4f heterometallic coordination frameworks with fascinating topological networks and potential applications have been few reported (Cai et al., 2009). We utilized isonicotinate as multifunctional ligand with O and N atoms on opposite sites. Here, a new metal-directed assembly of 4d–4f coordination polymer, which was synthesized under hydrothermal conditions, is reported.

The asymmetric unit of the title complex contains one NdIII ion, two AgI ions, four crystallographically unique isonicotinate ligands, one nitrate anion, two coordinated water molecules and one uncoordinated water molecule (Fig. 1). The NdIII ion is in a distorted square antiprismatic geometry, defined by eight O atoms from six isonicotinate ligands and two water molecules. The Nd—O bond distances and O—Nd—O bond angles range from 2.381 (3) to 2.564 (3) Å and 71.79 (11) to 145.83 (12)°, respectively (Table 1). The AgI ion exhibits an approximatly linear or bow-like configuration, being coordinated by two N atoms from two different isonicotinate ligands. The isonicotinate ligands link Nd and Ag metal centers, forming a layer in the (010) plane, which are stabilized by O—H···O hydrogen bonds involving the coordinated and uncoordinated water molecules (Table 2) and intralayer π–π stacking interactions between the pyridine rings, with a centroid–centroid distances of 3.571 (2) and 3.569 (2) Å. These layers are further connected by Ag···O(H2O) contacts and interlayer π–π stacking interactions [centroid–centroid distances = 3.479 (3) to 3.530 (3) Å] between the pyridine rings of two adjacent layers, assembling a three-dimensional supramolecular architecture (Fig. 2).

Experimental

A mixture of Nd2O3 (0.183 g, 0.5 mmol), AgNO3 (0.170 g, 1 mmol), isonicotinic acid (0.135 g, 1.5 mmol), water (10 ml) in the presence of HNO3(0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 443 K for 3 d, and then cooled to room temperature at 5 K h-1. The colorless block crystals of the title compound were obtained.

Refinement

Water H atoms were tentatively located in difference Fourier maps and refined with distance restraints of O—H = 0.85 (1) Å and H···H = 1.35 (1) Å, and with Uiso(H) = 1.5Ueq(O). H atoms attached to C atoms were placed at calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, 3/2-y, -1/2+z; (ii) -1+x, y, z; (iii) -1+x, 3/2-y, -1/2+z.]
Fig. 2.
A view of the layered networks in the title compound.

Crystal data

[Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2OF(000) = 1868
Mr = 964.45Dx = 2.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3327 reflections
a = 16.9648 (19) Åθ = 2.4–25.9°
b = 24.793 (3) ŵ = 3.25 mm1
c = 6.7770 (8) ÅT = 296 K
β = 95.849 (1)°Block, colorless
V = 2835.7 (6) Å30.23 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer5092 independent reflections
Radiation source: fine-focus sealed tube4024 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→20
Tmin = 0.522, Tmax = 0.592k = −29→29
14629 measured reflectionsl = −8→5

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0268P)2] where P = (Fo2 + 2Fc2)/3
5092 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.57 e Å3
9 restraintsΔρmin = −0.91 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Nd10.269306 (14)0.662399 (10)0.11749 (4)0.01959 (8)
Ag10.77067 (2)0.728604 (19)0.49039 (7)0.04705 (14)
Ag20.76495 (3)0.510435 (19)−0.09689 (7)0.05046 (14)
O70.38451 (19)0.60656 (13)0.1017 (5)0.0338 (9)
O20.35364 (18)0.68568 (12)0.4305 (5)0.0289 (8)
O50.1656 (2)0.60334 (15)−0.0262 (5)0.0456 (10)
C30.5223 (3)0.77468 (17)0.5011 (7)0.0242 (11)
H30.49580.80740.50540.029*
C10.3912 (3)0.72711 (19)0.4857 (7)0.0229 (11)
C20.4801 (3)0.72666 (17)0.4924 (6)0.0197 (10)
N20.8974 (2)0.72776 (16)0.4834 (6)0.0341 (10)
N10.6441 (2)0.72777 (16)0.4996 (6)0.0327 (10)
C60.5224 (3)0.67929 (18)0.4894 (7)0.0246 (11)
H60.49630.64620.48350.030*
C100.9388 (3)0.77404 (19)0.4767 (7)0.0308 (12)
H100.91220.80670.48410.037*
C91.0183 (3)0.77478 (18)0.4595 (7)0.0275 (12)
H91.04480.80760.45630.033*
C200.5069 (3)0.56100 (17)0.1414 (7)0.0258 (11)
C190.4289 (3)0.57592 (18)0.2152 (8)0.0259 (11)
O80.4127 (2)0.55701 (14)0.3746 (5)0.0371 (9)
N40.6493 (2)0.52916 (15)0.0010 (6)0.0316 (10)
C220.5972 (3)0.56051 (19)−0.1083 (8)0.0337 (13)
H220.60940.5719−0.23230.040*
C230.6300 (3)0.5135 (2)0.1793 (8)0.0341 (13)
H230.66490.49120.25610.041*
C50.6032 (3)0.6814 (2)0.4951 (8)0.0334 (13)
H50.63120.64910.49590.040*
C81.0594 (3)0.72707 (18)0.4469 (6)0.0218 (11)
C121.0174 (3)0.67961 (19)0.4565 (7)0.0279 (12)
H121.04300.64660.44930.033*
C140.0414 (3)0.57066 (17)−0.1642 (7)0.0242 (11)
C150.0089 (3)0.57587 (18)0.0129 (7)0.0308 (12)
H150.03890.59040.12280.037*
C130.1266 (3)0.58696 (18)−0.1849 (8)0.0277 (12)
C18−0.0059 (3)0.54950 (18)−0.3233 (7)0.0291 (12)
H180.01300.5466−0.44690.035*
O60.1513 (2)0.58320 (14)−0.3490 (5)0.0413 (10)
C240.5615 (3)0.52881 (19)0.2536 (8)0.0319 (12)
H240.55140.51760.37960.038*
C210.5267 (3)0.57646 (18)−0.0447 (8)0.0299 (12)
H210.49190.5977−0.12630.036*
C16−0.0679 (3)0.55962 (19)0.0274 (8)0.0348 (13)
H16−0.08950.56450.14690.042*
C17−0.0811 (3)0.53274 (19)−0.2966 (8)0.0341 (13)
H17−0.11170.5176−0.40430.041*
C40.6027 (3)0.77385 (19)0.5035 (7)0.0316 (12)
H40.62990.80640.50800.038*
C110.9378 (3)0.6811 (2)0.4766 (7)0.0323 (12)
H110.91070.64870.48590.039*
O10.3610 (2)0.76974 (13)0.5428 (5)0.0410 (10)
C71.1467 (3)0.72688 (19)0.4130 (7)0.0249 (11)
O31.17260 (19)0.68473 (13)0.3448 (5)0.0321 (8)
O41.1839 (2)0.76939 (14)0.4499 (6)0.0419 (10)
O3W0.2587 (2)0.57863 (14)0.3352 (5)0.0308 (8)
H3B0.2294 (19)0.578 (2)0.429 (4)0.046*
H3A0.3050 (10)0.571 (2)0.387 (6)0.046*
O2W0.2838 (2)0.64789 (16)−0.2408 (6)0.0436 (10)
H2A0.257 (2)0.6245 (15)−0.310 (7)0.065*
H2B0.251 (2)0.6703 (17)−0.205 (8)0.065*
N50.7673 (3)0.5865 (2)0.3990 (10)0.0570 (15)
O110.7991 (3)0.5483 (2)0.3274 (7)0.0789 (15)
O90.7419 (3)0.5845 (2)0.5614 (7)0.094 (2)
O100.7590 (3)0.6295 (2)0.3006 (8)0.0892 (17)
N3−0.1129 (2)0.53684 (16)−0.1258 (7)0.0326 (10)
O1W0.7704 (3)0.65730 (16)0.9046 (8)0.0724 (14)
H1A0.769 (5)0.644 (2)1.019 (4)0.109*
H1B0.763 (5)0.6313 (17)0.824 (7)0.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Nd10.01421 (13)0.02069 (13)0.02424 (15)−0.00081 (11)0.00374 (10)0.00027 (11)
Ag10.0152 (2)0.0632 (3)0.0635 (3)0.0000 (2)0.00745 (19)−0.0005 (2)
Ag20.0231 (2)0.0605 (3)0.0700 (4)0.0006 (2)0.0150 (2)0.0039 (2)
O70.028 (2)0.037 (2)0.037 (2)0.0145 (16)0.0071 (16)0.0030 (16)
O20.0205 (18)0.0311 (18)0.035 (2)−0.0041 (15)0.0004 (15)−0.0064 (15)
O50.041 (2)0.062 (2)0.033 (2)−0.028 (2)0.0013 (18)−0.0006 (19)
C30.024 (3)0.019 (2)0.030 (3)0.001 (2)0.002 (2)−0.001 (2)
C10.017 (3)0.032 (3)0.021 (3)0.003 (2)0.006 (2)0.003 (2)
C20.017 (2)0.027 (2)0.015 (3)0.002 (2)−0.0024 (19)−0.0007 (19)
N20.021 (2)0.040 (3)0.042 (3)0.005 (2)0.0059 (19)0.000 (2)
N10.022 (2)0.036 (3)0.040 (3)0.003 (2)0.0046 (19)0.002 (2)
C60.020 (3)0.025 (3)0.029 (3)−0.003 (2)0.004 (2)−0.003 (2)
C100.025 (3)0.028 (3)0.039 (3)0.006 (2)0.000 (2)−0.001 (2)
C90.027 (3)0.023 (3)0.033 (3)−0.002 (2)0.003 (2)−0.002 (2)
C200.025 (3)0.018 (2)0.034 (3)0.000 (2)0.001 (2)−0.002 (2)
C190.024 (3)0.020 (2)0.034 (3)0.003 (2)0.003 (2)−0.005 (2)
O80.035 (2)0.046 (2)0.032 (2)0.0109 (18)0.0120 (17)0.0124 (18)
N40.024 (2)0.028 (2)0.044 (3)−0.0003 (19)0.007 (2)−0.004 (2)
C220.031 (3)0.030 (3)0.042 (4)0.003 (2)0.010 (2)0.005 (2)
C230.023 (3)0.034 (3)0.045 (4)0.005 (2)−0.001 (2)0.002 (3)
C50.024 (3)0.031 (3)0.044 (4)0.012 (2)0.003 (2)0.000 (2)
C80.019 (3)0.029 (3)0.017 (3)−0.001 (2)0.0016 (19)−0.003 (2)
C120.022 (3)0.025 (3)0.037 (3)0.002 (2)0.003 (2)−0.001 (2)
C140.024 (3)0.019 (2)0.029 (3)−0.004 (2)0.000 (2)0.000 (2)
C150.035 (3)0.028 (3)0.029 (3)−0.005 (2)0.003 (2)−0.006 (2)
C130.028 (3)0.023 (3)0.031 (3)−0.008 (2)0.000 (2)−0.002 (2)
C180.029 (3)0.030 (3)0.029 (3)−0.003 (2)0.006 (2)−0.002 (2)
O60.035 (2)0.057 (3)0.033 (2)−0.0149 (19)0.0110 (17)−0.0100 (18)
C240.029 (3)0.033 (3)0.034 (3)−0.001 (2)0.001 (2)0.001 (2)
C210.032 (3)0.025 (3)0.033 (3)0.002 (2)0.003 (2)0.002 (2)
C160.032 (3)0.038 (3)0.035 (3)0.006 (3)0.012 (2)−0.001 (2)
C170.030 (3)0.035 (3)0.036 (3)−0.009 (2)−0.005 (3)0.003 (2)
C40.027 (3)0.028 (3)0.040 (3)−0.007 (2)0.002 (2)0.000 (2)
C110.026 (3)0.032 (3)0.040 (3)−0.006 (2)0.004 (2)0.004 (2)
O10.022 (2)0.034 (2)0.067 (3)0.0073 (16)0.0020 (17)−0.0206 (19)
C70.020 (3)0.032 (3)0.022 (3)0.001 (2)0.000 (2)0.003 (2)
O30.0211 (19)0.037 (2)0.040 (2)0.0038 (16)0.0118 (15)−0.0043 (17)
O40.022 (2)0.043 (2)0.061 (3)−0.0105 (17)0.0040 (17)−0.0183 (19)
O3W0.026 (2)0.034 (2)0.033 (2)0.0006 (17)0.0093 (15)0.0029 (16)
O2W0.043 (2)0.058 (3)0.030 (2)−0.010 (2)0.0055 (18)−0.0101 (18)
N50.033 (3)0.068 (4)0.066 (5)0.011 (3)−0.011 (3)−0.016 (4)
O110.052 (3)0.109 (4)0.073 (4)0.026 (3)−0.003 (2)−0.027 (3)
O90.082 (4)0.167 (6)0.035 (3)0.062 (4)0.013 (3)0.004 (3)
O100.096 (5)0.084 (4)0.090 (4)−0.013 (3)0.021 (3)−0.014 (3)
N30.027 (2)0.030 (2)0.041 (3)−0.0025 (19)0.006 (2)0.002 (2)
O1W0.071 (3)0.041 (3)0.106 (4)−0.009 (3)0.010 (3)0.001 (2)

Geometric parameters (Å, °)

Nd1—O1i2.381 (3)N4—C231.341 (6)
Nd1—O22.502 (3)N4—C221.342 (6)
Nd1—O3ii2.426 (3)C22—C211.370 (7)
Nd1—O4iii2.432 (3)C22—H220.9300
Nd1—O52.416 (3)C23—C241.366 (7)
Nd1—O72.406 (3)C23—H230.9300
Nd1—O2W2.492 (4)C5—H50.9300
Nd1—O3W2.564 (3)C8—C121.381 (6)
Ag1—N12.155 (4)C8—C71.521 (6)
Ag1—N22.155 (4)C12—C111.372 (6)
Ag1—O1Wi2.888 (4)C12—H120.9300
Ag1—O102.771 (5)C14—C151.377 (7)
Ag2—N3iv2.200 (4)C14—C181.380 (6)
Ag2—N42.184 (4)C14—C131.521 (7)
Ag2—O3Wv2.741 (4)C15—C161.378 (7)
Ag2—O9vi2.950 (5)C15—H150.9300
O7—C191.272 (5)C13—O61.232 (6)
O2—C11.246 (5)C18—C171.372 (7)
O5—C131.271 (5)C18—H180.9300
C3—C41.361 (6)C24—H240.9300
C3—C21.387 (6)C21—H210.9300
C3—H30.9300C16—N31.348 (6)
C1—O11.253 (5)C16—H160.9300
C1—C21.505 (6)C17—N31.330 (7)
C2—C61.378 (6)C17—H170.9300
N2—C111.348 (6)C4—H40.9300
N2—C101.349 (6)C11—H110.9300
N1—C51.342 (6)C7—O41.241 (5)
N1—C41.343 (6)C7—O31.241 (5)
C6—C51.369 (6)O3W—H3B0.85 (3)
C6—H60.9300O3W—H3A0.85 (3)
C10—C91.365 (7)O2W—H2A0.85 (4)
C10—H100.9300O2W—H2B0.84 (4)
C9—C81.381 (6)N5—O111.215 (6)
C9—H90.9300N5—O91.223 (7)
C20—C241.390 (6)N5—O101.260 (7)
C20—C211.392 (7)O1W—H1A0.85 (3)
C20—C191.507 (7)O1W—H1B0.85 (4)
C19—O81.234 (6)
O1i—Nd1—O781.12 (12)O8—C19—C20118.6 (4)
O1i—Nd1—O5143.84 (12)O7—C19—C20115.6 (5)
O7—Nd1—O5101.23 (13)C23—N4—C22117.1 (5)
O1i—Nd1—O3ii118.20 (12)C23—N4—Ag2121.5 (3)
O7—Nd1—O3ii139.85 (11)C22—N4—Ag2121.2 (4)
O5—Nd1—O3ii83.25 (12)N4—C22—C21122.8 (5)
O1i—Nd1—O4iii77.33 (11)N4—C22—H22118.6
O7—Nd1—O4iii145.83 (12)C21—C22—H22118.6
O5—Nd1—O4iii81.87 (13)N4—C23—C24123.2 (5)
O3ii—Nd1—O4iii74.25 (12)N4—C23—H23118.4
O1i—Nd1—O2W76.30 (13)C24—C23—H23118.4
O7—Nd1—O2W73.28 (12)N1—C5—C6123.1 (4)
O5—Nd1—O2W70.13 (12)N1—C5—H5118.4
O3ii—Nd1—O2W142.39 (11)C6—C5—H5118.4
O4iii—Nd1—O2W76.03 (13)C9—C8—C12117.4 (4)
O1i—Nd1—O271.79 (11)C9—C8—C7121.2 (4)
O7—Nd1—O276.91 (11)C12—C8—C7121.3 (4)
O5—Nd1—O2144.23 (11)C11—C12—C8120.0 (4)
O3ii—Nd1—O276.96 (11)C11—C12—H12120.0
O4iii—Nd1—O2119.84 (11)C8—C12—H12120.0
O2W—Nd1—O2138.99 (12)C15—C14—C18117.7 (5)
O1i—Nd1—O3W141.28 (11)C15—C14—C13121.5 (4)
O7—Nd1—O3W70.39 (11)C18—C14—C13120.7 (5)
O5—Nd1—O3W69.53 (11)C14—C15—C16120.0 (5)
O3ii—Nd1—O3W74.22 (11)C14—C15—H15120.0
O4iii—Nd1—O3W139.34 (12)C16—C15—H15120.0
O2W—Nd1—O3W117.61 (12)O6—C13—O5126.3 (5)
O2—Nd1—O3W76.51 (10)O6—C13—C14118.5 (4)
O1i—Nd1—H2B75.9 (13)O5—C13—C14115.2 (5)
O7—Nd1—H2B92.3 (10)C17—C18—C14119.1 (5)
O5—Nd1—H2B68.0 (13)C17—C18—H18120.4
O3ii—Nd1—H2B125.2 (6)C14—C18—H18120.4
O4iii—Nd1—H2B56.7 (5)C23—C24—C20120.2 (5)
O2W—Nd1—H2B19.3 (10)C23—C24—H24119.9
O2—Nd1—H2B147.1 (13)C20—C24—H24119.9
O3W—Nd1—H2B129.5 (12)C22—C21—C20120.3 (5)
N2—Ag1—N1178.82 (16)C22—C21—H21119.9
N4—Ag2—N3iv147.86 (15)C20—C21—H21119.9
C19—O7—Nd1138.6 (3)N3—C16—C15122.2 (5)
C1—O2—Nd1132.5 (3)N3—C16—H16118.9
C13—O5—Nd1146.1 (3)C15—C16—H16118.9
C4—C3—C2119.9 (4)N3—C17—C18123.8 (5)
C4—C3—H3120.0N3—C17—H17118.1
C2—C3—H3120.0C18—C17—H17118.1
O2—C1—O1125.1 (4)N1—C4—C3122.5 (4)
O2—C1—C2118.9 (4)N1—C4—H4118.7
O1—C1—C2115.9 (4)C3—C4—H4118.7
C6—C2—C3117.7 (4)N2—C11—C12122.4 (5)
C6—C2—C1121.9 (4)N2—C11—H11118.8
C3—C2—C1120.4 (4)C12—C11—H11118.8
C11—N2—C10117.4 (4)C1—O1—Nd1vii163.4 (3)
C11—N2—Ag1121.4 (3)O4—C7—O3126.7 (5)
C10—N2—Ag1121.1 (3)O4—C7—C8116.7 (4)
C5—N1—C4117.4 (4)O3—C7—C8116.5 (4)
C5—N1—Ag1121.4 (3)C7—O3—Nd1iv135.8 (3)
C4—N1—Ag1121.2 (3)C7—O4—Nd1viii162.1 (3)
C5—C6—C2119.3 (4)Nd1—O3W—H3B122 (3)
C5—C6—H6120.4Nd1—O3W—H3A108 (3)
C2—C6—H6120.4H3B—O3W—H3A105.7 (17)
N2—C10—C9122.5 (4)Nd1—O2W—H2A122 (4)
N2—C10—H10118.8Nd1—O2W—H2B59 (4)
C9—C10—H10118.8H2A—O2W—H2B106 (4)
C10—C9—C8120.3 (4)O11—N5—O9122.7 (7)
C10—C9—H9119.9O11—N5—O10118.7 (7)
C8—C9—H9119.9O9—N5—O10118.6 (6)
C24—C20—C21116.4 (5)C17—N3—C16117.0 (5)
C24—C20—C19121.2 (5)C17—N3—Ag2ii121.6 (3)
C21—C20—C19122.3 (4)C16—N3—Ag2ii121.4 (4)
O8—C19—O7125.8 (5)H1A—O1W—H1B106 (5)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x−1, y, z; (iii) x−1, −y+3/2, z−1/2; (iv) x+1, y, z; (v) −x+1, −y+1, −z; (vi) x, y, z−1; (vii) x, −y+3/2, z+1/2; (viii) x+1, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10ix0.85 (3)1.96 (2)2.796 (8)167 (7)
O1W—H1B···O90.85 (4)2.12 (5)2.945 (8)164 (6)
O2W—H2A···O60.85 (4)2.06 (3)2.799 (5)145 (5)
O2W—H2B···O4iii0.84 (4)2.21 (4)3.033 (5)166 (5)
O3W—H3A···O80.85 (3)1.87 (2)2.653 (5)153 (4)
O3W—H3B···O6ix0.85 (3)2.11 (3)2.951 (5)174 (5)

Symmetry codes: (ix) x, y, z+1; (iii) x−1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2237).

References

  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, Y.-P., Yu, Q.-Y., Zhou, Z.-Y., Hu, Z.-J., Fang, H.-C., Wang, N., Zhan, Q.-G., Chen, L. & Su, C.-Y. (2009). CrystEngComm, 11, 1006–1013.
  • Min, K. S. & Suh, M. P. (2000). J. Am. Chem. Soc.122, 6834–6840.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography