PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2621.
Published online 2009 October 3. doi:  10.1107/S1600536809038410
PMCID: PMC2971063

10-Ethynyl-2,3,6,6a,9,10-hexa­hydro-1H-6,9-methano­pyrrolo[2,1-i][2,1]benzo­thia­zol-10-ol 5,5-dioxide

Abstract

In the title compound, C13H15NO3S, the sole classical hydrogen-bond donor is involved in an intra­molecular O—H(...)N hydrogen bond. In the crystal structure, pairs of mol­ecules related by inversion centres are linked by pairs of weak inter­molecular C—H(...)O inter­actions; these centrosymmetric pairs are, in turn, linked further by weak inter­molecular C—H(...)O inter­actions, forming two-dimensional sheets oriented parallel to (101).

Related literature

For background to our ongoing research on the synthesis of himandrine and related alkaloids, see: Ciufolini et al. (2007 [triangle]); Liang & Ciufolini (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2621-scheme1.jpg

Experimental

Crystal data

  • C13H15NO3S
  • M r = 265.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2621-efi1.jpg
  • a = 24.113 (3) Å
  • b = 6.6202 (7) Å
  • c = 15.111 (2) Å
  • β = 92.625 (5)°
  • V = 2409.6 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 173 K
  • 0.35 × 0.27 × 0.18 mm

Data collection

  • Bruker X8 APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.877, T max = 0.963
  • 13946 measured reflections
  • 2889 independent reflections
  • 2523 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.095
  • S = 1.03
  • 2889 reflections
  • 167 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038410/lh2908sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038410/lh2908Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the University of British Columbia, the Canada Research Chair Program, NSERC, CIHR, and Merck Frosst Canada, Ltd, is gratefully acknowledged.

supplementary crystallographic information

Comment

The oxidative amidation of phenols offers interesting opportunities in the synthesis of nitrogenous substances. We employed spirocyclization of phenolic sulfonamides to prepare a tricyclic intermediate in the ongoing research on the synthesis of himandrine and related alkaloids (Liang et al., 2008; Ciufolini et al., 2007). The molecular stucture of the title compound is shown in Fig.1. In the crystal structure, pairs of molecules for related by inversion centres are linked by weak intermolecular C—H···O interactions (Table 1, Fig. 2). These centrosymmetric pairs, are in turn, linked further by weak intermolecular C—H···O interactions to form 2-D sheets oriented parallel to the (101) plane, as shown in Fig.3.

Experimental

Potassium carbonate (137 mg, 0.99 mmol) was added to a solution of 10- [(trimethylsilyl)ethynyl]-2,3,6,6a,9,10-hexahydro-1H-6,9-methanopyrrolo [2,1-i][2,1]benzisothiazol-10-ol 5,5-dioxide (110 mg, 0.33 mmol) in MeOH (1 ml). Upon the completion of the reaction, the mixture was concentrated and dried over high vacuum. Chromatography of the residue (EtOAc / hexanes = 1 / 2) gave 78 mg (0.29 mmol, 89%) product as a colourless solid. X-ray quality single crystals were obtained by slow evaporation of a dichloromethane/hexanes (1:2v/v) solution of the title compound over two weeks.

Refinement

H atoms boned to C atoms were placed in calculated positions with C-H = 0.93-1.00Å and included in the refinement with Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was refined indpendently with an isotropic displacement parameter.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
A centrosymmetric pair of molecules with weak intermolecular C—H···O interactions shown as dashed lines.
Fig. 3.
Part of the crystal structure of the title compound, showing C-H···O hydrogen-bonded (dashed lines) sheets parallel to the (101) plane.

Crystal data

C13H15NO3SF(000) = 1120
Mr = 265.32Dx = 1.463 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6461 reflections
a = 24.113 (3) Åθ = 2.7–28.1°
b = 6.6202 (7) ŵ = 0.27 mm1
c = 15.111 (2) ÅT = 173 K
β = 92.625 (5)°Prism, colourless
V = 2409.6 (5) Å30.35 × 0.27 × 0.18 mm
Z = 8

Data collection

Bruker X8 APEXII diffractometer2889 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −31→30
Tmin = 0.877, Tmax = 0.963k = −7→8
13946 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0543P)2 + 1.8974P] where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.08386 (6)0.8014 (2)0.24477 (10)0.0260 (3)
H10.08040.80170.18190.031*
C20.10447 (6)0.6218 (2)0.29734 (9)0.0227 (3)
H20.11370.50770.25730.027*
C30.15678 (6)0.69210 (19)0.35283 (9)0.0167 (3)
C40.07087 (6)0.9590 (2)0.29339 (10)0.0241 (3)
H40.05801.08260.26810.029*
C50.13832 (5)0.86156 (19)0.41981 (8)0.0143 (2)
C60.07809 (5)0.9277 (2)0.39197 (9)0.0179 (3)
H60.06691.05070.42520.021*
C70.05869 (6)0.5588 (2)0.36090 (10)0.0246 (3)
H7A0.02510.51440.32610.030*
H7B0.07200.44460.39850.030*
C80.04457 (6)0.7400 (2)0.41948 (9)0.0192 (3)
H80.00380.76820.41630.023*
C100.17913 (6)1.0368 (2)0.43416 (9)0.0197 (3)
H10A0.21770.99260.42520.024*
H10B0.16981.14970.39310.024*
C110.17199 (6)1.0997 (2)0.53035 (10)0.0258 (3)
H11A0.20461.17610.55430.031*
H11B0.13821.18270.53610.031*
C120.16678 (6)0.8971 (2)0.57668 (9)0.0238 (3)
H12A0.20380.83890.59190.029*
H12B0.14620.91120.63150.029*
C170.19816 (6)0.7687 (2)0.29199 (9)0.0187 (3)
C180.23235 (6)0.8204 (2)0.24254 (10)0.0237 (3)
H180.25970.86180.20300.028*
N130.13541 (5)0.76842 (17)0.51039 (7)0.0166 (2)
O90.18201 (4)0.52655 (15)0.39984 (7)0.0242 (2)
O150.04568 (4)0.85899 (19)0.58703 (7)0.0300 (3)
O160.06809 (5)0.50367 (17)0.56167 (8)0.0316 (3)
S140.069910 (13)0.70937 (5)0.53140 (2)0.01917 (11)
H9O0.1739 (10)0.542 (3)0.4521 (16)0.049 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0192 (7)0.0402 (9)0.0183 (7)−0.0073 (6)−0.0010 (5)0.0025 (6)
C20.0242 (7)0.0233 (7)0.0210 (7)−0.0070 (6)0.0053 (5)−0.0054 (5)
C30.0182 (6)0.0136 (6)0.0187 (6)0.0007 (5)0.0044 (5)0.0015 (5)
C40.0178 (6)0.0313 (8)0.0228 (7)0.0008 (6)−0.0017 (5)0.0094 (6)
C50.0148 (6)0.0128 (6)0.0156 (6)0.0005 (5)0.0023 (4)0.0017 (5)
C60.0152 (6)0.0180 (6)0.0205 (6)0.0021 (5)0.0012 (5)0.0031 (5)
C70.0235 (7)0.0255 (7)0.0252 (7)−0.0096 (6)0.0052 (6)−0.0040 (6)
C80.0149 (6)0.0239 (7)0.0188 (6)−0.0023 (5)0.0015 (5)0.0018 (5)
C100.0200 (6)0.0163 (6)0.0228 (7)−0.0038 (5)0.0026 (5)−0.0006 (5)
C110.0277 (7)0.0236 (7)0.0261 (7)−0.0062 (6)0.0012 (6)−0.0059 (6)
C120.0223 (7)0.0293 (8)0.0194 (7)−0.0024 (6)−0.0020 (5)−0.0013 (6)
C170.0187 (6)0.0164 (6)0.0209 (6)0.0019 (5)0.0022 (5)−0.0003 (5)
C180.0231 (7)0.0232 (7)0.0252 (7)−0.0003 (5)0.0067 (6)0.0016 (6)
N130.0147 (5)0.0194 (6)0.0160 (5)−0.0001 (4)0.0027 (4)0.0027 (4)
O90.0301 (5)0.0163 (5)0.0271 (6)0.0078 (4)0.0097 (4)0.0062 (4)
O150.0232 (5)0.0426 (7)0.0248 (5)0.0037 (5)0.0081 (4)−0.0073 (5)
O160.0286 (6)0.0307 (6)0.0357 (6)−0.0060 (5)0.0048 (5)0.0151 (5)
S140.01614 (17)0.0232 (2)0.01853 (18)−0.00074 (12)0.00492 (12)0.00346 (12)

Geometric parameters (Å, °)

C1—C41.322 (2)C7—H7B0.9900
C1—C21.501 (2)C8—S141.7832 (14)
C1—H10.9500C8—H81.0000
C2—C71.5532 (19)C10—C111.529 (2)
C2—C31.5536 (19)C10—H10A0.9900
C2—H21.0000C10—H10B0.9900
C3—O91.4269 (16)C11—C121.521 (2)
C3—C171.4770 (18)C11—H11A0.9900
C3—C51.5882 (17)C11—H11B0.9900
C4—C61.5062 (19)C12—N131.4938 (18)
C4—H40.9500C12—H12A0.9900
C5—N131.5057 (16)C12—H12B0.9900
C5—C101.5304 (18)C17—C181.188 (2)
C5—C61.5563 (17)C18—H180.9500
C6—C81.5497 (18)N13—S141.6716 (11)
C6—H61.0000O9—H9O0.83 (2)
C7—C81.538 (2)O15—S141.4402 (11)
C7—H7A0.9900O16—S141.4378 (11)
C4—C1—C2114.33 (13)C7—C8—C6109.82 (11)
C4—C1—H1122.8C7—C8—S14112.45 (10)
C2—C1—H1122.8C6—C8—S14100.68 (9)
C1—C2—C7108.20 (12)C7—C8—H8111.2
C1—C2—C3106.82 (11)C6—C8—H8111.2
C7—C2—C3109.22 (11)S14—C8—H8111.2
C1—C2—H2110.8C11—C10—C5103.97 (11)
C7—C2—H2110.8C11—C10—H10A111.0
C3—C2—H2110.8C5—C10—H10A111.0
O9—C3—C17106.79 (11)C11—C10—H10B111.0
O9—C3—C2110.84 (11)C5—C10—H10B111.0
C17—C3—C2108.77 (11)H10A—C10—H10B109.0
O9—C3—C5110.54 (10)C12—C11—C10102.28 (11)
C17—C3—C5111.79 (10)C12—C11—H11A111.3
C2—C3—C5108.13 (10)C10—C11—H11A111.3
C1—C4—C6114.92 (13)C12—C11—H11B111.3
C1—C4—H4122.5C10—C11—H11B111.3
C6—C4—H4122.5H11A—C11—H11B109.2
N13—C5—C10103.78 (10)N13—C12—C11104.12 (11)
N13—C5—C6106.21 (10)N13—C12—H12A110.9
C10—C5—C6114.26 (11)C11—C12—H12A110.9
N13—C5—C3108.43 (10)N13—C12—H12B110.9
C10—C5—C3115.39 (10)C11—C12—H12B110.9
C6—C5—C3108.17 (10)H12A—C12—H12B109.0
C4—C6—C8109.72 (12)C18—C17—C3176.65 (15)
C4—C6—C5111.73 (11)C17—C18—H18180.0
C8—C6—C5101.16 (10)C12—N13—C5109.44 (10)
C4—C6—H6111.3C12—N13—S14117.37 (9)
C8—C6—H6111.3C5—N13—S14110.62 (8)
C5—C6—H6111.3C3—O9—H9O105.3 (16)
C8—C7—C2109.18 (11)O16—S14—O15116.53 (7)
C8—C7—H7A109.8O16—S14—N13108.95 (6)
C2—C7—H7A109.8O15—S14—N13111.24 (6)
C8—C7—H7B109.8O16—S14—C8113.28 (7)
C2—C7—H7B109.8O15—S14—C8110.17 (7)
H7A—C7—H7B108.3N13—S14—C894.53 (6)
C4—C1—C2—C758.42 (16)C5—C6—C8—C7−67.18 (13)
C4—C1—C2—C3−59.07 (15)C4—C6—C8—S14169.71 (9)
C1—C2—C3—O9−175.33 (11)C5—C6—C8—S1451.57 (10)
C7—C2—C3—O967.86 (14)N13—C5—C10—C11−29.30 (13)
C1—C2—C3—C17−58.21 (14)C6—C5—C10—C1185.90 (13)
C7—C2—C3—C17−175.02 (12)C3—C5—C10—C11−147.76 (11)
C1—C2—C3—C563.37 (13)C5—C10—C11—C1240.51 (14)
C7—C2—C3—C5−53.44 (14)C10—C11—C12—N13−35.77 (14)
C2—C1—C4—C6−1.13 (18)O9—C3—C17—C1835 (3)
O9—C3—C5—N13−18.73 (14)C2—C3—C17—C18−85 (3)
C17—C3—C5—N13−137.54 (11)C5—C3—C17—C18156 (3)
C2—C3—C5—N13102.76 (11)C11—C12—N13—C518.13 (14)
O9—C3—C5—C1097.12 (13)C11—C12—N13—S14−108.98 (11)
C17—C3—C5—C10−21.69 (16)C10—C5—N13—C126.98 (13)
C2—C3—C5—C10−141.39 (11)C6—C5—N13—C12−113.80 (12)
O9—C3—C5—C6−133.51 (11)C3—C5—N13—C12130.14 (11)
C17—C3—C5—C6107.68 (12)C10—C5—N13—S14137.81 (9)
C2—C3—C5—C6−12.02 (13)C6—C5—N13—S1417.02 (12)
C1—C4—C6—C8−55.26 (16)C3—C5—N13—S14−99.03 (10)
C1—C4—C6—C556.10 (17)C12—N13—S14—O16−103.72 (11)
N13—C5—C6—C4−161.09 (11)C5—N13—S14—O16129.74 (9)
C10—C5—C6—C485.14 (14)C12—N13—S14—O1526.08 (12)
C3—C5—C6—C4−44.87 (14)C5—N13—S14—O15−100.46 (9)
N13—C5—C6—C8−44.42 (12)C12—N13—S14—C8139.77 (10)
C10—C5—C6—C8−158.19 (11)C5—N13—S14—C813.23 (10)
C3—C5—C6—C871.81 (12)C7—C8—S14—O16−34.96 (11)
C1—C2—C7—C8−56.73 (15)C6—C8—S14—O16−151.79 (9)
C3—C2—C7—C859.20 (15)C7—C8—S14—O15−167.50 (9)
C2—C7—C8—C63.27 (16)C6—C8—S14—O1575.67 (10)
C2—C7—C8—S14−107.96 (12)C7—C8—S14—N1377.91 (10)
C4—C6—C8—C750.96 (15)C6—C8—S14—N13−38.92 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9O···N130.83 (2)1.99 (2)2.606 (1)131 (2)
C8—H8···O16i1.002.533.183 (2)123
C18—H18···O9ii0.952.403.341 (2)169

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2908).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Ciufolini, M. A., Braun, N. A., Canesi, S., Ousmer, M., Chang, J. & Chai, D. (2007). Synthesis, pp. 3759–3772.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Liang, H. & Ciufolini, M. A. (2008). J. Org. Chem.73, 4299–4301. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography