PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2611–o2612.
Published online 2009 October 3. doi:  10.1107/S1600536809039543
PMCID: PMC2971060

2-(4-Chloro-3-nitro­phen­yl)-4-(4-chloro­phen­yl)-1,3-thia­zole

Abstract

The title compound, C15H8Cl2N2O2S, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the 4-chloro-3-nitro­phenyl ring and the thia­zole ring are 0.5 (1) and 7.1 (1)° and those between the 4-chloro­phenyl ring and the thia­zole ring are 7.1 (1) and 7.4 (1)° in the two mol­ecules. The crystal structure is stabilized by inter­molecular C—H(...)Cl and C—H(...)O hydrogen bonds.

Related literature

The amino­thia­zole ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development, see: Fortuna et al. (1988 [triangle]); Frank et al. (1995 [triangle]); Karl et al. (1983 [triangle]); Tsuji & Ishikawa (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2611-scheme1.jpg

Experimental

Crystal data

  • C15H8Cl2N2O2S
  • M r = 351.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2611-efi1.jpg
  • a = 7.4379 (19) Å
  • b = 12.305 (3) Å
  • c = 16.808 (4) Å
  • α = 88.596 (5)°
  • β = 84.131 (4)°
  • γ = 76.721 (5)°
  • V = 1489.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 292 K
  • 0.28 × 0.24 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.854, T max = 0.918
  • 14507 measured reflections
  • 5235 independent reflections
  • 2855 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.130
  • S = 0.97
  • 5235 reflections
  • 397 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039543/fj2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039543/fj2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the DST–IRHPA for the CCD X-ray facility at IISc and SKN thanks the CSIR (SRF), India, for financial support.

supplementary crystallographic information

Comment

The aminothiazole ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development as antiallergies (Karl et al., 1983), anti-inflammatory (Fortuna et al., 1988), antibacterial (Tsuji et al., 1994) and anti-HIV agents (Frank et al., 1995]. In view of different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound. The compound is completely planar with the nitro group not planar with the 4-chloro-4-nitrophenyl ring to avoid electrostatic repulsion with the chlorine atom in an ortho position, the dihedral twist being 35.4 (3)° and 48.1 (3)° respectively in the two molecules. Relevant torsion angles are given in Table 1. Figure 1 gives an ORTEP view depicting two molecules (A) and (B) in the asymmetric unit. The C—N bond lengths of the five-membered thiazoyl ring is different indicating that the electrnoic environment around each nitrogen atom is different. The torsion angles N2—C7—C1—C6/N2'-C7'-C1'-C6' and N2—C9—C10—C11/N2'-C9'-C10'-C11'are nearly equal to 180° indicating delocalization of the π electron density between all the three aromatic moieties, namely the thiazoyl ring and the adjacent aryl rings. The crystal structure is stabilized by C—H···O intermolecular hydrogen bonds (between molecules of the 'A' type), each of which are held by C—H···Cl intermolecular interactions (with molecules of 'B' type) between them (Figure 2).

Experimental

A mixture of 4-chloro-3-nitrobenzonitrile, (0.1 mol), thioacetic acid (0.1 mol), boron trifluoride diethyletherate (0.1 mol) and 1,2 dichloro ethane was refluxed for 1 h at 80 C. The reaction medium was quenched with 1 N hydrochloric acid (congo red) and the obtained product i.e 4-chloro-3-nitrobenzothioamide was isolated with dichloromethane. The solvent was evaporated at reduced pressure and the crude product (Yield = 89%) left behind was recrystallized from ethyl acetate. This was taken with 2-bromo-1-(4-chlorophenyl)ethanone (0.1 mol) in absolute ethanol medium was refluxed under nitrogen atmosphere for 2 h at 80 C. Reaction medium was cooled to room temperature and poured into 50 ml of water containing sodium acetate. The precipitate obtained was filtered and recrystallized from ethanol. (Yield: 92%) and the melting point was 128–129 C.

Refinement

All the aromatic H atoms were positioned geometrically, C—H = 0.93 Å, and refined using a riding model with Uiso(H)= 1.2 Ueq(C).

Figures

Fig. 1.
: Molecular structure shows the atom labelling Scheme with displacement ellipsoids for non-H atoms at 50% probability level, hydrogen atoms are arbitary circle.
Fig. 2.
: The molecular packing depicting C—H···O and C—H···Cl intermolecular interactions in the solid state.

Crystal data

C15H8Cl2N2O2SZ = 4
Mr = 351.20F(000) = 712
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4379 (19) ÅCell parameters from 320 reflections
b = 12.305 (3) Åθ = 1.0–28.0°
c = 16.808 (4) ŵ = 0.58 mm1
α = 88.596 (5)°T = 292 K
β = 84.131 (4)°Plate, colorless
γ = 76.721 (5)°0.28 × 0.24 × 0.15 mm
V = 1489.3 (6) Å3

Data collection

Bruker SMART CCD area-detector diffractometer5235 independent reflections
Radiation source: fine-focus sealed tube2855 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.854, Tmax = 0.918k = −14→14
14507 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0568P)2] where P = (Fo2 + 2Fc2)/3
5235 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.28130 (14)−0.08178 (8)1.08929 (6)0.0671 (3)
S1'0.55762 (17)0.57562 (10)0.65181 (7)0.0872 (4)
Cl2'1.01634 (16)0.76240 (10)0.20368 (8)0.1005 (4)
Cl20.02483 (18)−0.26482 (9)0.64160 (7)0.0962 (4)
Cl1'0.55818 (19)0.00327 (11)0.69174 (8)0.1110 (5)
Cl10.3241 (2)0.48445 (10)1.11376 (8)0.1125 (5)
N20.2343 (4)0.0036 (2)0.95110 (18)0.0511 (7)
N2'0.7301 (4)0.4815 (2)0.52398 (18)0.0561 (8)
C10.2750 (4)0.1409 (3)1.0459 (2)0.0477 (8)
C90.2261 (4)−0.1062 (3)0.9456 (2)0.0501 (9)
C10'0.8033 (5)0.6361 (3)0.4402 (2)0.0572 (10)
C1'0.6345 (5)0.3473 (3)0.6178 (2)0.0558 (10)
C20.2580 (4)0.2243 (3)0.9895 (2)0.0514 (9)
H20.23850.20880.93760.062*
C100.1895 (4)−0.1486 (3)0.8695 (2)0.0506 (9)
C70.2621 (4)0.0289 (3)1.0228 (2)0.0497 (9)
C9'0.7236 (5)0.5945 (3)0.5149 (2)0.0582 (10)
C30.2695 (5)0.3300 (3)1.0087 (2)0.0551 (9)
N10.2537 (5)0.4131 (3)0.9443 (3)0.0807 (11)
C3'0.6725 (5)0.1531 (4)0.5877 (2)0.0627 (10)
C2'0.6890 (5)0.2590 (3)0.5648 (2)0.0575 (10)
H2'0.73730.27120.51290.069*
C40.3003 (5)0.3551 (3)1.0859 (3)0.0650 (10)
C120.1416 (5)−0.2967 (3)0.7884 (3)0.0694 (11)
H120.1406−0.37150.78220.083*
C15'0.8695 (5)0.5650 (3)0.3768 (2)0.0627 (10)
H15'0.86790.48990.38300.075*
C130.0966 (5)−0.2213 (3)0.7275 (2)0.0657 (11)
C6'0.5613 (5)0.3250 (4)0.6947 (2)0.0728 (12)
H6'0.52530.38240.73200.087*
C5'0.5417 (5)0.2198 (4)0.7162 (2)0.0770 (13)
H5'0.48920.20760.76730.092*
C150.1492 (5)−0.0769 (3)0.8060 (2)0.0617 (10)
H150.1539−0.00250.81100.074*
C140.1024 (5)−0.1121 (3)0.7358 (2)0.0692 (11)
H140.0748−0.06190.69400.083*
C110.1880 (5)−0.2598 (3)0.8587 (3)0.0663 (11)
H110.2191−0.31060.89980.080*
C4'0.5983 (5)0.1320 (4)0.6634 (3)0.0704 (11)
C60.3070 (5)0.1658 (3)1.1221 (2)0.0633 (10)
H60.32020.11021.16100.076*
C7'0.6514 (5)0.4589 (3)0.5922 (2)0.0577 (10)
C14'0.9381 (5)0.6015 (3)0.3042 (3)0.0681 (11)
H14'0.98270.55180.26210.082*
N1'0.7310 (6)0.0637 (3)0.5286 (3)0.0868 (11)
C13'0.9395 (5)0.7127 (4)0.2952 (3)0.0708 (11)
C50.3194 (5)0.2702 (4)1.1411 (2)0.0697 (11)
H50.34150.28461.19290.084*
C80.2493 (5)−0.1640 (3)1.0153 (2)0.0597 (10)
H80.2477−0.23911.02140.072*
C12'0.8791 (6)0.7851 (3)0.3577 (3)0.0791 (13)
H12'0.88360.85980.35120.095*
O2'0.6821 (5)0.0812 (3)0.4624 (2)0.1199 (13)
C11'0.8114 (5)0.7484 (3)0.4306 (3)0.0734 (12)
H11'0.77130.79800.47310.088*
O1'0.8319 (6)−0.0236 (3)0.5481 (2)0.1366 (15)
O20.3185 (6)0.3817 (3)0.8786 (2)0.1309 (15)
C8'0.6340 (6)0.6561 (3)0.5786 (3)0.0785 (12)
H8'0.61640.73320.58190.094*
O10.1819 (6)0.5084 (3)0.9591 (2)0.1363 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0729 (7)0.0615 (7)0.0633 (7)−0.0124 (5)−0.0007 (5)0.0185 (5)
S1'0.0982 (9)0.0881 (9)0.0658 (7)−0.0012 (7)−0.0043 (6)−0.0207 (6)
Cl2'0.0947 (9)0.0892 (8)0.1212 (10)−0.0332 (7)−0.0096 (7)0.0432 (8)
Cl20.1247 (10)0.0670 (7)0.0990 (9)−0.0185 (7)−0.0239 (8)−0.0217 (6)
Cl1'0.1280 (11)0.1157 (10)0.1013 (10)−0.0510 (9)−0.0264 (8)0.0499 (8)
Cl10.1490 (12)0.0793 (8)0.1167 (11)−0.0433 (8)−0.0024 (9)−0.0282 (7)
N20.0489 (18)0.0452 (18)0.057 (2)−0.0088 (14)−0.0001 (15)0.0068 (15)
N2'0.0536 (19)0.056 (2)0.058 (2)−0.0087 (15)−0.0144 (16)−0.0017 (16)
C10.041 (2)0.052 (2)0.048 (2)−0.0085 (17)0.0027 (16)0.0034 (18)
C90.038 (2)0.045 (2)0.063 (3)−0.0075 (17)0.0035 (17)0.0139 (19)
C10'0.050 (2)0.050 (2)0.073 (3)−0.0085 (18)−0.022 (2)0.001 (2)
C1'0.046 (2)0.082 (3)0.038 (2)−0.008 (2)−0.0140 (17)0.002 (2)
C20.054 (2)0.053 (2)0.049 (2)−0.0172 (18)−0.0032 (17)0.0029 (19)
C100.047 (2)0.043 (2)0.060 (2)−0.0117 (17)0.0071 (18)0.0029 (19)
C70.041 (2)0.054 (2)0.051 (2)−0.0083 (17)0.0048 (17)0.0083 (18)
C9'0.054 (2)0.053 (3)0.067 (3)−0.0032 (19)−0.021 (2)−0.013 (2)
C30.051 (2)0.055 (2)0.057 (3)−0.0135 (18)0.0016 (18)0.011 (2)
N10.105 (3)0.057 (3)0.082 (3)−0.028 (2)0.002 (2)0.004 (2)
C3'0.060 (3)0.074 (3)0.055 (3)−0.015 (2)−0.010 (2)0.009 (2)
C2'0.050 (2)0.073 (3)0.047 (2)−0.010 (2)−0.0025 (18)0.009 (2)
C40.058 (2)0.063 (3)0.072 (3)−0.014 (2)0.008 (2)−0.012 (2)
C120.068 (3)0.044 (2)0.097 (3)−0.016 (2)0.000 (2)−0.008 (2)
C15'0.062 (3)0.044 (2)0.083 (3)−0.0150 (19)−0.011 (2)0.005 (2)
C130.063 (3)0.052 (3)0.079 (3)−0.010 (2)0.002 (2)−0.007 (2)
C6'0.067 (3)0.095 (3)0.054 (3)−0.011 (2)−0.014 (2)0.004 (2)
C5'0.070 (3)0.116 (4)0.046 (3)−0.022 (3)−0.009 (2)0.023 (3)
C150.078 (3)0.044 (2)0.064 (3)−0.021 (2)0.005 (2)0.000 (2)
C140.098 (3)0.046 (2)0.065 (3)−0.021 (2)−0.001 (2)−0.003 (2)
C110.062 (3)0.048 (2)0.087 (3)−0.0114 (19)−0.004 (2)0.008 (2)
C4'0.064 (3)0.086 (3)0.066 (3)−0.022 (2)−0.021 (2)0.025 (3)
C60.068 (3)0.065 (3)0.056 (3)−0.016 (2)−0.003 (2)0.010 (2)
C7'0.049 (2)0.066 (3)0.056 (3)−0.0033 (19)−0.0160 (19)−0.003 (2)
C14'0.065 (3)0.054 (3)0.085 (3)−0.018 (2)−0.004 (2)0.010 (2)
N1'0.108 (3)0.070 (3)0.082 (3)−0.021 (2)−0.009 (3)0.006 (3)
C13'0.053 (3)0.062 (3)0.099 (3)−0.013 (2)−0.015 (2)0.007 (3)
C50.074 (3)0.082 (3)0.053 (3)−0.019 (2)−0.003 (2)−0.008 (2)
C80.060 (2)0.045 (2)0.072 (3)−0.0136 (18)0.004 (2)0.007 (2)
C12'0.069 (3)0.049 (3)0.127 (4)−0.022 (2)−0.030 (3)0.020 (3)
O2'0.169 (4)0.100 (3)0.089 (3)−0.018 (2)−0.032 (2)−0.013 (2)
C11'0.074 (3)0.051 (3)0.099 (4)−0.012 (2)−0.029 (3)−0.008 (2)
O1'0.181 (4)0.076 (2)0.131 (3)0.013 (2)−0.015 (3)0.011 (2)
O20.237 (5)0.094 (3)0.074 (2)−0.070 (3)−0.002 (3)0.011 (2)
C8'0.093 (3)0.061 (3)0.082 (3)−0.012 (2)−0.023 (3)−0.007 (2)
O10.185 (4)0.066 (2)0.143 (3)−0.014 (2)0.011 (3)0.028 (2)

Geometric parameters (Å, °)

S1—C81.692 (4)C3'—C4'1.377 (5)
S1—C71.730 (3)C3'—C2'1.378 (5)
S1'—C8'1.695 (4)C3'—N1'1.459 (5)
S1'—C7'1.737 (4)C2'—H2'0.9300
Cl2'—C13'1.733 (4)C4—C51.373 (5)
Cl2—C131.727 (4)C12—C131.379 (5)
Cl1'—C4'1.726 (4)C12—C111.380 (5)
Cl1—C41.723 (4)C12—H120.9300
N2—C71.300 (4)C15'—C14'1.380 (5)
N2—C91.372 (4)C15'—H15'0.9300
N2'—C7'1.288 (4)C13—C141.366 (5)
N2'—C9'1.385 (4)C6'—C5'1.370 (5)
C1—C21.372 (4)C6'—H6'0.9300
C1—C61.380 (5)C5'—C4'1.376 (5)
C1—C71.468 (5)C5'—H5'0.9300
C9—C81.361 (5)C15—C141.371 (5)
C9—C101.467 (5)C15—H150.9300
C10'—C15'1.372 (5)C14—H140.9300
C10'—C11'1.402 (5)C11—H110.9300
C10'—C9'1.465 (5)C6—C51.357 (5)
C1'—C2'1.383 (5)C6—H60.9300
C1'—C6'1.396 (5)C14'—C13'1.374 (5)
C1'—C7'1.458 (5)C14'—H14'0.9300
C2—C31.372 (4)N1'—O2'1.205 (4)
C2—H20.9300N1'—O1'1.219 (4)
C10—C151.380 (5)C13'—C12'1.366 (5)
C10—C111.388 (5)C5—H50.9300
C9'—C8'1.352 (5)C8—H80.9300
C3—C41.395 (5)C12'—C11'1.382 (5)
C3—N11.464 (5)C12'—H12'0.9300
N1—O11.193 (4)C11'—H11'0.9300
N1—O21.195 (4)C8'—H8'0.9300
C8—S1—C789.27 (18)C14—C13—Cl2119.9 (3)
C8'—S1'—C7'89.0 (2)C12—C13—Cl2119.5 (3)
C7—N2—C9111.8 (3)C5'—C6'—C1'121.2 (4)
C7'—N2'—C9'112.2 (3)C5'—C6'—H6'119.4
C2—C1—C6118.2 (3)C1'—C6'—H6'119.4
C2—C1—C7119.1 (3)C6'—C5'—C4'121.1 (4)
C6—C1—C7122.7 (3)C6'—C5'—H5'119.4
C8—C9—N2113.8 (3)C4'—C5'—H5'119.4
C8—C9—C10126.9 (3)C14—C15—C10122.0 (4)
N2—C9—C10119.3 (3)C14—C15—H15119.0
C15'—C10'—C11'118.2 (4)C10—C15—H15119.0
C15'—C10'—C9'120.1 (3)C13—C14—C15119.5 (4)
C11'—C10'—C9'121.7 (4)C13—C14—H14120.2
C2'—C1'—C6'117.4 (4)C15—C14—H14120.2
C2'—C1'—C7'120.0 (3)C12—C11—C10121.5 (4)
C6'—C1'—C7'122.5 (4)C12—C11—H11119.3
C3—C2—C1120.9 (3)C10—C11—H11119.3
C3—C2—H2119.5C5'—C4'—C3'118.1 (4)
C1—C2—H2119.5C5'—C4'—Cl1'119.0 (4)
C15—C10—C11117.3 (4)C3'—C4'—Cl1'122.7 (4)
C15—C10—C9120.3 (3)C5—C6—C1121.0 (4)
C11—C10—C9122.3 (3)C5—C6—H6119.5
N2—C7—C1123.5 (3)C1—C6—H6119.5
N2—C7—S1113.8 (3)N2'—C7'—C1'124.4 (3)
C1—C7—S1122.7 (3)N2'—C7'—S1'113.7 (3)
C8'—C9'—N2'113.3 (4)C1'—C7'—S1'121.9 (3)
C8'—C9'—C10'126.8 (4)C13'—C14'—C15'118.8 (4)
N2'—C9'—C10'119.9 (3)C13'—C14'—H14'120.6
C2—C3—C4120.6 (3)C15'—C14'—H14'120.6
C2—C3—N1117.2 (3)O2'—N1'—O1'123.4 (4)
C4—C3—N1122.2 (4)O2'—N1'—C3'118.3 (4)
O1—N1—O2122.6 (4)O1'—N1'—C3'118.3 (4)
O1—N1—C3119.8 (4)C12'—C13'—C14'120.7 (4)
O2—N1—C3117.6 (4)C12'—C13'—Cl2'119.3 (3)
C4'—C3'—C2'121.3 (4)C14'—C13'—Cl2'120.0 (4)
C4'—C3'—N1'120.5 (4)C6—C5—C4121.7 (4)
C2'—C3'—N1'118.2 (4)C6—C5—H5119.2
C3'—C2'—C1'120.9 (4)C4—C5—H5119.2
C3'—C2'—H2'119.6C9—C8—S1111.3 (3)
C1'—C2'—H2'119.6C9—C8—H8124.4
C5—C4—C3117.5 (4)S1—C8—H8124.4
C5—C4—Cl1119.0 (3)C13'—C12'—C11'120.5 (4)
C3—C4—Cl1123.4 (3)C13'—C12'—H12'119.8
C13—C12—C11119.1 (4)C11'—C12'—H12'119.8
C13—C12—H12120.4C12'—C11'—C10'119.7 (4)
C11—C12—H12120.4C12'—C11'—H11'120.1
C10'—C15'—C14'122.1 (4)C10'—C11'—H11'120.1
C10'—C15'—H15'119.0C9'—C8'—S1'111.7 (3)
C14'—C15'—H15'119.0C9'—C8'—H8'124.1
C14—C13—C12120.5 (4)S1'—C8'—H8'124.1
C7—N2—C9—C8−0.2 (4)C9—C10—C15—C14−175.7 (3)
C7—N2—C9—C10178.1 (3)C12—C13—C14—C15−1.5 (6)
C6—C1—C2—C3−1.1 (5)Cl2—C13—C14—C15176.2 (3)
C7—C1—C2—C3−179.9 (3)C10—C15—C14—C13−0.5 (6)
C8—C9—C10—C15173.0 (3)C13—C12—C11—C100.3 (6)
N2—C9—C10—C15−5.1 (5)C15—C10—C11—C12−2.3 (5)
C8—C9—C10—C11−5.0 (5)C9—C10—C11—C12175.8 (3)
N2—C9—C10—C11176.9 (3)C6'—C5'—C4'—C3'−1.1 (6)
C9—N2—C7—C1−179.4 (3)C6'—C5'—C4'—Cl1'−176.4 (3)
C9—N2—C7—S10.2 (4)C2'—C3'—C4'—C5'−0.4 (5)
C2—C1—C7—N2−0.3 (5)N1'—C3'—C4'—C5'−178.6 (4)
C6—C1—C7—N2−179.2 (3)C2'—C3'—C4'—Cl1'174.7 (3)
C2—C1—C7—S1−179.9 (2)N1'—C3'—C4'—Cl1'−3.6 (5)
C6—C1—C7—S11.3 (4)C2—C1—C6—C50.7 (5)
C8—S1—C7—N2−0.1 (3)C7—C1—C6—C5179.5 (3)
C8—S1—C7—C1179.5 (3)C9'—N2'—C7'—C1'178.9 (3)
C7'—N2'—C9'—C8'−1.1 (4)C9'—N2'—C7'—S1'1.0 (4)
C7'—N2'—C9'—C10'−178.9 (3)C2'—C1'—C7'—N2'−6.4 (5)
C15'—C10'—C9'—C8'−171.7 (4)C6'—C1'—C7'—N2'174.8 (3)
C11'—C10'—C9'—C8'7.1 (6)C2'—C1'—C7'—S1'171.4 (3)
C15'—C10'—C9'—N2'5.8 (5)C6'—C1'—C7'—S1'−7.5 (5)
C11'—C10'—C9'—N2'−175.5 (3)C8'—S1'—C7'—N2'−0.6 (3)
C1—C2—C3—C40.6 (5)C8'—S1'—C7'—C1'−178.5 (3)
C1—C2—C3—N1178.8 (3)C10'—C15'—C14'—C13'−0.2 (5)
C2—C3—N1—O1146.7 (4)C4'—C3'—N1'—O2'132.4 (4)
C4—C3—N1—O1−35.2 (6)C2'—C3'—N1'—O2'−45.9 (6)
C2—C3—N1—O2−35.0 (5)C4'—C3'—N1'—O1'−50.1 (6)
C4—C3—N1—O2143.1 (4)C2'—C3'—N1'—O1'131.7 (4)
C4'—C3'—C2'—C1'1.2 (5)C15'—C14'—C13'—C12'1.9 (6)
N1'—C3'—C2'—C1'179.5 (3)C15'—C14'—C13'—Cl2'−177.5 (3)
C6'—C1'—C2'—C3'−0.5 (5)C1—C6—C5—C40.2 (6)
C7'—C1'—C2'—C3'−179.4 (3)C3—C4—C5—C6−0.7 (6)
C2—C3—C4—C50.3 (5)Cl1—C4—C5—C6−178.3 (3)
N1—C3—C4—C5−177.8 (3)N2—C9—C8—S10.2 (4)
C2—C3—C4—Cl1177.7 (3)C10—C9—C8—S1−178.0 (3)
N1—C3—C4—Cl1−0.3 (5)C7—S1—C8—C90.0 (3)
C11'—C10'—C15'—C14'−1.7 (5)C14'—C13'—C12'—C11'−1.6 (6)
C9'—C10'—C15'—C14'177.1 (3)Cl2'—C13'—C12'—C11'177.8 (3)
C11—C12—C13—C141.6 (6)C13'—C12'—C11'—C10'−0.5 (6)
C11—C12—C13—Cl2−176.1 (3)C15'—C10'—C11'—C12'2.1 (5)
C2'—C1'—C6'—C5'−1.0 (5)C9'—C10'—C11'—C12'−176.7 (3)
C7'—C1'—C6'—C5'177.9 (3)N2'—C9'—C8'—S1'0.7 (4)
C1'—C6'—C5'—C4'1.9 (6)C10'—C9'—C8'—S1'178.2 (3)
C11—C10—C15—C142.4 (5)C7'—S1'—C8'—C9'−0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.483.285 (5)145
C15'—H15'···Cl2ii0.932.733.610 (4)158

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2246).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fortuna, H., James, D. R., Robert, W. D., Francis, A. K., Roland, L. W., Steven, P. S., James, H. H., Patrick, R. Y. & George, W. C. (1988). J. Med. Chem.31, 1719–1728.
  • Frank, W. B., Amanda, S. C., Marita, H. S., Richard, J., Nils, G. J., Christopher, L. J., Michael, D. K., Peter, L., John, M. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem.38, 4929–4936.
  • Karl, D. H., Friedrich, K. H. & James, T. O. (1983). J. Med. Chem.26, 1158–1163.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett.4, 1601–1606.
  • Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography