PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2807.
Published online 2009 October 23. doi:  10.1107/S1600536809042470
PMCID: PMC2971056

N-(2,6-Dimethyl­phen­yl)maleamic acid

Abstract

The asymmetric unit of the title compound, C12H13NO3, contains two independent mol­ecules. The conformation of the N—H bond and the C=O bond in the amide segment are anti to each other. The mol­ecular conformation of each mol­ecule is stabilized by an intra­molecular O—H(...)O hydrogen bond. In the crystal, mol­ecules are connected through intermolecular N—H(...)O hydrogen bonds. In addition, there is a carbon­yl–carbonyl dipolar inter­action with an O(...)C contact of 2.926 (3) Å.

Related literature

For our sudies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009a [triangle],b [triangle],c [triangle]); Prasad et al. (2002 [triangle]). For bond-length data, see: Allen et al. (1998 [triangle]). For modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976 [triangle]); Jagannathan et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2807-scheme1.jpg

Experimental

Crystal data

  • C12H13NO3
  • M r = 219.23
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2807-efi4.jpg
  • a = 12.5268 (4) Å
  • b = 12.9226 (4) Å
  • c = 14.6835 (5) Å
  • V = 2376.95 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 K
  • 0.56 × 0.54 × 0.48 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.940, T max = 0.955
  • 38472 measured reflections
  • 2533 independent reflections
  • 2201 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.089
  • S = 1.07
  • 2533 reflections
  • 305 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042470/bt5099sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042470/bt5099Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

The amide moiety is an important constituent of many biologically important compounds. As a part of studying the effect of ring and side chain substitutions on the crystal structures of this class of compounds (Gowda et al., 2009a,b,c; Prasad et al., 2002), the crystal structure of N-(2,6-dimethylphenyl)-maleamic acid (I) has been determined. The asymmetric unit of the cell contains two independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the present study, the rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-(3,5-dichlorophenyl)succinamic acid (Gowda et al., 2009c), but contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group in N-(2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994). One intramolecular hydrogen O—H···O bond is present within each maleamic acid moiety. The crystal packing is determined by intermolecular N–H···O hydrogen bonds (Table 1) as seen in Fig. 2. Other intermolecular interactions, which seem to play some role, are the carbonyl-carbonyl interactions, first analyzed in the paper of Allen et al. (1998). These dipolar interactions are observed through a short O···C contact of 2.926 (3) Å between the O4 atom of amide moiety in molecule 2 and the C10 atom of the carboxyl moiety in molecule 1 at the position x + 1,y,z. The amido group –NHCO– forms dihedral angles of 80.5 (1)° and 64.0 (2)° with the aromatic ring in the first and second molecules, respectively.

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2,6-dimethylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,6-dimethylaniline. The resultant solid N-(2,6-dimethylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

C-bonded H atoms were placed in calculated positions with C–H distances of 0.93 Å (C aromatic) and 0.96 Å (C methyl). H atoms attached to nitrogen were refined with the N–H distance restrained to 0.86 (3) Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5 Ueq(C methyl). The hydroxyl H atoms were freely refined. The absolute structure cannot be determined reliably because anomalous scattering power is too small. In the final refinement cycles the 1938 Friedel pairs were merged.

Figures

Fig. 1.
Molecular structure of the two molecules in the asymmetric unit of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. Symmetry codes (i): -x,y - 1/2,-z + 1/2; (ii) x - 1/2,-y + 3/2,-z.

Crystal data

C12H13NO3F(000) = 928
Mr = 219.23Dx = 1.225 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 20238 reflections
a = 12.5268 (4) Åθ = 2.1–29.4°
b = 12.9226 (4) ŵ = 0.09 mm1
c = 14.6835 (5) ÅT = 295 K
V = 2376.95 (13) Å3Prism, colourless
Z = 80.56 × 0.54 × 0.48 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer2533 independent reflections
graphite2201 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.025
ω scansθmax = 25.6°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)h = −15→15
Tmin = 0.940, Tmax = 0.955k = −15→15
38472 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0646P)2] where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.25341 (16)0.39170 (14)0.10573 (14)0.0489 (5)
C20.34832 (18)0.37146 (16)0.15245 (15)0.0570 (5)
C30.44161 (19)0.3689 (2)0.10282 (19)0.0703 (7)
H30.50570.35340.13170.084*
C40.4408 (2)0.3891 (2)0.0114 (2)0.0824 (8)
H40.50450.3875−0.02110.099*
C50.3477 (2)0.4115 (2)−0.03281 (17)0.0767 (7)
H50.34940.4271−0.09460.092*
C60.2509 (2)0.41152 (16)0.01250 (16)0.0617 (6)
C70.10578 (16)0.47012 (14)0.18861 (14)0.0486 (5)
C80.00863 (15)0.44838 (14)0.24183 (14)0.0475 (4)
H8−0.00790.37870.24930.057*
C9−0.05843 (15)0.51409 (14)0.28054 (14)0.0469 (5)
H9−0.11520.48290.31070.056*
C10−0.05898 (16)0.62944 (15)0.28426 (14)0.0483 (5)
C110.3486 (3)0.3555 (2)0.25411 (18)0.0814 (7)
H11A0.41850.33420.27340.122*
H11B0.29760.3030.26980.122*
H11C0.32990.41910.28390.122*
C120.1475 (3)0.4315 (3)−0.0362 (2)0.0929 (9)
H12A0.11690.495−0.01460.139*
H12B0.09890.3755−0.02460.139*
H12C0.16050.4365−0.10050.139*
N10.15528 (13)0.38779 (12)0.15561 (12)0.0514 (4)
H1N0.1307 (18)0.3268 (17)0.1688 (16)0.062*
O10.14060 (13)0.55904 (11)0.17420 (12)0.0726 (5)
O20.01844 (12)0.68259 (10)0.24839 (12)0.0591 (4)
H2A0.067 (2)0.640 (2)0.2168 (18)0.071*
O3−0.13208 (14)0.67180 (12)0.32315 (12)0.0728 (5)
C210.69266 (14)0.49032 (15)0.15611 (12)0.0432 (4)
C220.64858 (15)0.48672 (16)0.24349 (13)0.0500 (5)
C230.65844 (19)0.39448 (19)0.29159 (15)0.0641 (6)
H230.62920.38960.34960.077*
C240.7103 (2)0.3108 (2)0.25536 (18)0.0734 (7)
H240.71750.25040.28930.088*
C250.7512 (2)0.31594 (19)0.16950 (16)0.0676 (6)
H250.78510.25810.14530.081*
C260.74363 (16)0.40489 (16)0.11727 (14)0.0517 (5)
C270.76542 (15)0.64136 (16)0.07866 (12)0.0452 (4)
C280.73911 (15)0.73479 (15)0.02517 (12)0.0455 (4)
H280.66690.75050.02050.055*
C290.80542 (15)0.79940 (14)−0.01721 (13)0.0459 (4)
H290.77180.8548−0.04570.055*
C300.92344 (16)0.79890 (17)−0.02710 (16)0.0556 (5)
C310.5931 (2)0.5778 (2)0.28480 (16)0.0700 (6)
H31A0.56640.55930.34390.105*
H31B0.53470.59820.24650.105*
H31C0.64250.63420.29060.105*
C320.7872 (2)0.4054 (2)0.02141 (17)0.0750 (7)
H32A0.85460.44080.02050.112*
H32B0.73790.4403−0.01810.112*
H32C0.79690.33550.00090.112*
N20.68287 (12)0.58427 (13)0.10535 (11)0.0455 (4)
H2N0.6232 (16)0.6091 (17)0.0914 (15)0.055*
O40.85813 (11)0.61612 (13)0.09830 (11)0.0665 (4)
O50.96486 (13)0.85754 (14)−0.08053 (13)0.0768 (5)
O60.98128 (12)0.73556 (19)0.02073 (15)0.0970 (8)
H6A0.944 (3)0.685 (3)0.057 (3)0.116*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0508 (11)0.0374 (9)0.0585 (11)−0.0027 (9)0.0129 (10)−0.0054 (9)
C20.0592 (12)0.0494 (12)0.0623 (12)−0.0093 (10)0.0059 (11)−0.0118 (10)
C30.0507 (12)0.0769 (16)0.0835 (17)−0.0117 (12)0.0087 (12)−0.0201 (14)
C40.0672 (16)0.0939 (19)0.0861 (19)−0.0245 (15)0.0330 (15)−0.0243 (16)
C50.0903 (19)0.0815 (17)0.0581 (13)−0.0216 (15)0.0227 (14)−0.0082 (12)
C60.0706 (14)0.0523 (12)0.0622 (13)−0.0056 (11)0.0079 (12)−0.0023 (10)
C70.0476 (11)0.0342 (10)0.0641 (12)−0.0011 (9)0.0063 (9)0.0024 (9)
C80.0450 (10)0.0319 (9)0.0654 (11)−0.0024 (8)0.0027 (9)0.0004 (9)
C90.0408 (10)0.0411 (10)0.0587 (11)−0.0007 (8)0.0003 (9)0.0018 (9)
C100.0509 (11)0.0404 (10)0.0536 (11)0.0064 (10)−0.0065 (10)−0.0059 (9)
C110.0836 (17)0.0905 (18)0.0702 (15)0.0041 (15)−0.0008 (14)−0.0064 (14)
C120.096 (2)0.107 (2)0.0757 (17)0.0050 (18)−0.0048 (17)0.0136 (16)
N10.0520 (9)0.0336 (8)0.0688 (10)−0.0028 (7)0.0148 (8)0.0015 (8)
O10.0681 (10)0.0378 (7)0.1120 (13)−0.0057 (7)0.0323 (10)0.0003 (8)
O20.0579 (9)0.0351 (7)0.0843 (10)−0.0007 (7)0.0032 (8)−0.0074 (7)
O30.0757 (11)0.0502 (8)0.0924 (12)0.0134 (8)0.0203 (10)−0.0100 (8)
C210.0318 (8)0.0537 (11)0.0440 (9)−0.0060 (8)−0.0052 (8)0.0082 (8)
C220.0418 (10)0.0618 (12)0.0464 (10)−0.0055 (9)−0.0012 (9)0.0078 (9)
C230.0655 (14)0.0739 (14)0.0528 (11)−0.0056 (13)−0.0001 (11)0.0197 (11)
C240.0832 (17)0.0629 (14)0.0742 (15)0.0040 (13)−0.0054 (14)0.0225 (13)
C250.0729 (14)0.0562 (12)0.0738 (14)0.0096 (12)−0.0027 (14)0.0035 (11)
C260.0468 (10)0.0558 (11)0.0525 (10)−0.0011 (10)−0.0035 (9)0.0008 (9)
C270.0366 (10)0.0582 (11)0.0407 (9)−0.0030 (9)−0.0040 (8)0.0062 (8)
C280.0344 (9)0.0538 (11)0.0484 (10)0.0008 (9)0.0007 (9)0.0040 (9)
C290.0424 (9)0.0460 (10)0.0494 (10)−0.0002 (8)0.0023 (9)0.0035 (9)
C300.0449 (11)0.0578 (12)0.0643 (12)−0.0118 (10)0.0003 (10)0.0091 (11)
C310.0711 (14)0.0823 (16)0.0565 (12)0.0068 (13)0.0147 (11)0.0056 (12)
C320.0820 (17)0.0803 (16)0.0626 (13)0.0058 (14)0.0126 (13)−0.0049 (13)
N20.0311 (7)0.0567 (10)0.0486 (8)0.0000 (7)0.0006 (7)0.0115 (8)
O40.0365 (7)0.0845 (11)0.0784 (10)−0.0085 (8)−0.0110 (7)0.0377 (9)
O50.0529 (9)0.0795 (11)0.0979 (13)−0.0113 (8)0.0134 (8)0.0336 (10)
O60.0379 (8)0.1251 (17)0.1281 (16)−0.0123 (10)−0.0069 (9)0.0741 (15)

Geometric parameters (Å, °)

C1—C61.393 (3)C21—C261.397 (3)
C1—C21.397 (3)C21—C221.398 (3)
C1—N11.432 (3)C21—N21.430 (2)
C2—C31.378 (3)C22—C231.391 (3)
C2—C111.507 (4)C22—C311.495 (3)
C3—C41.368 (4)C23—C241.369 (4)
C3—H30.93C23—H230.93
C4—C51.365 (4)C24—C251.362 (4)
C4—H40.93C24—H240.93
C5—C61.383 (4)C25—C261.385 (3)
C5—H50.93C25—H250.93
C6—C121.502 (4)C26—C321.510 (3)
C7—O11.247 (2)C27—O41.240 (2)
C7—N11.323 (3)C27—N21.329 (2)
C7—C81.473 (3)C27—C281.478 (3)
C8—C91.323 (3)C28—C291.332 (3)
C8—H80.93C28—H280.93
C9—C101.492 (3)C29—C301.486 (3)
C9—H90.93C29—H290.93
C10—O31.210 (2)C30—O51.208 (2)
C10—O21.300 (3)C30—O61.299 (3)
C11—H11A0.96C31—H31A0.96
C11—H11B0.96C31—H31B0.96
C11—H11C0.96C31—H31C0.96
C12—H12A0.96C32—H32A0.96
C12—H12B0.96C32—H32B0.96
C12—H12C0.96C32—H32C0.96
N1—H1N0.87 (2)N2—H2N0.839 (19)
O2—H2A0.94 (3)O6—H6A0.96 (4)
C6—C1—C2122.42 (19)C26—C21—C22121.93 (17)
C6—C1—N1119.32 (19)C26—C21—N2119.83 (16)
C2—C1—N1118.21 (18)C22—C21—N2118.22 (18)
C3—C2—C1117.8 (2)C23—C22—C21117.4 (2)
C3—C2—C11121.3 (2)C23—C22—C31120.63 (18)
C1—C2—C11120.9 (2)C21—C22—C31122.01 (18)
C4—C3—C2120.5 (3)C24—C23—C22121.5 (2)
C4—C3—H3119.7C24—C23—H23119.3
C2—C3—H3119.7C22—C23—H23119.3
C5—C4—C3120.9 (2)C25—C24—C23119.9 (2)
C5—C4—H4119.5C25—C24—H24120
C3—C4—H4119.5C23—C24—H24120
C4—C5—C6121.3 (2)C24—C25—C26121.8 (2)
C4—C5—H5119.3C24—C25—H25119.1
C6—C5—H5119.3C26—C25—H25119.1
C5—C6—C1116.9 (2)C25—C26—C21117.45 (19)
C5—C6—C12121.8 (2)C25—C26—C32119.7 (2)
C1—C6—C12121.3 (2)C21—C26—C32122.85 (19)
O1—C7—N1120.98 (18)O4—C27—N2120.93 (17)
O1—C7—C8123.68 (17)O4—C27—C28123.18 (17)
N1—C7—C8115.34 (16)N2—C27—C28115.89 (16)
C9—C8—C7129.05 (17)C29—C28—C27128.42 (18)
C9—C8—H8115.5C29—C28—H28115.8
C7—C8—H8115.5C27—C28—H28115.8
C8—C9—C10131.31 (19)C28—C29—C30131.57 (18)
C8—C9—H9114.3C28—C29—H29114.2
C10—C9—H9114.3C30—C29—H29114.2
O3—C10—O2121.11 (18)O5—C30—O6120.45 (19)
O3—C10—C9118.2 (2)O5—C30—C29119.2 (2)
O2—C10—C9120.65 (18)O6—C30—C29120.32 (19)
C2—C11—H11A109.5C22—C31—H31A109.5
C2—C11—H11B109.5C22—C31—H31B109.5
H11A—C11—H11B109.5H31A—C31—H31B109.5
C2—C11—H11C109.5C22—C31—H31C109.5
H11A—C11—H11C109.5H31A—C31—H31C109.5
H11B—C11—H11C109.5H31B—C31—H31C109.5
C6—C12—H12A109.5C26—C32—H32A109.5
C6—C12—H12B109.5C26—C32—H32B109.5
H12A—C12—H12B109.5H32A—C32—H32B109.5
C6—C12—H12C109.5C26—C32—H32C109.5
H12A—C12—H12C109.5H32A—C32—H32C109.5
H12B—C12—H12C109.5H32B—C32—H32C109.5
C7—N1—C1124.14 (16)C27—N2—C21123.92 (16)
C7—N1—H1N118.8 (16)C27—N2—H2N114.2 (16)
C1—N1—H1N116.8 (15)C21—N2—H2N121.9 (16)
C10—O2—H2A111.5 (15)C30—O6—H6A117 (2)
C6—C1—C2—C3−1.6 (3)C26—C21—C22—C230.8 (3)
N1—C1—C2—C3175.98 (19)N2—C21—C22—C23179.67 (18)
C6—C1—C2—C11177.0 (2)C26—C21—C22—C31−179.38 (19)
N1—C1—C2—C11−5.4 (3)N2—C21—C22—C31−0.5 (3)
C1—C2—C3—C42.1 (3)C21—C22—C23—C240.7 (3)
C11—C2—C3—C4−176.5 (3)C31—C22—C23—C24−179.1 (2)
C2—C3—C4—C5−0.4 (4)C22—C23—C24—C25−1.7 (4)
C3—C4—C5—C6−2.0 (4)C23—C24—C25—C261.1 (4)
C4—C5—C6—C12.5 (4)C24—C25—C26—C210.3 (4)
C4—C5—C6—C12−177.3 (3)C24—C25—C26—C32−178.1 (2)
C2—C1—C6—C5−0.7 (3)C22—C21—C26—C25−1.3 (3)
N1—C1—C6—C5−178.2 (2)N2—C21—C26—C25179.84 (18)
C2—C1—C6—C12179.1 (2)C22—C21—C26—C32177.0 (2)
N1—C1—C6—C121.5 (3)N2—C21—C26—C32−1.8 (3)
O1—C7—C8—C91.8 (4)O4—C27—C28—C297.2 (3)
N1—C7—C8—C9−177.9 (2)N2—C27—C28—C29−172.82 (19)
C7—C8—C9—C10−0.4 (4)C27—C28—C29—C301.7 (4)
C8—C9—C10—O3178.4 (2)C28—C29—C30—O5168.9 (2)
C8—C9—C10—O2−3.2 (3)C28—C29—C30—O6−10.7 (4)
O1—C7—N1—C13.2 (3)O4—C27—N2—C21−1.2 (3)
C8—C7—N1—C1−177.03 (18)C28—C27—N2—C21178.79 (17)
C6—C1—N1—C7−84.2 (3)C26—C21—N2—C27−64.1 (3)
C2—C1—N1—C798.2 (2)C22—C21—N2—C27117.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)2.01 (2)2.824 (2)156 (2)
N2—H2N···O5ii0.84 (2)2.04 (2)2.856 (2)166 (2)
O2—H2A···O10.94 (3)1.53 (3)2.465 (2)173 (2)
O6—H6A···O40.96 (4)1.52 (4)2.462 (2)163 (4)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5099).

References

  • Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o2056. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873. [PMC free article] [PubMed]
  • Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr.24, 75–78.
  • Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography