PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1432–m1433.
Published online 2009 October 28. doi:  10.1107/S1600536809043475
PMCID: PMC2971052

Bis(μ-6-hydroxy­naphthalene-1-carboxyl­ato)bis­[(6-hydroxy­naphthalene-1-car­box­yl­ato)(1,10-phenanthroline)cadmium(II)] tetra­hydrate

Abstract

The title complex, [Cd2(C11H7O3)4(C12H8N2)2]·4H2O, has a centrosymmetric binuclear structure in which two CdII atoms are both six-coordinated and bridged by 6-hydroxy­naphthalene-1-carboxyl­ate ligands, with a Cd(...)Cd separation of 3.671 (1) Å. The remaining coordination sites are occupied by two N atoms of a 1,10-phenanthroline ligand and two O atoms of a 6-hydroxy­naphthalene-1-carboxyl­ate ligand. The crystal packing is stabilized by O—H(...)O hydrogen-bonding inter­actions.

Related literature

For the preparation of functional coordination architectures, see: Barnett & Champness (2003 [triangle]); Comba & Schiek (2003 [triangle]); Telfer & Kuroda (2003 [triangle]); Robin & Fromm (2006 [triangle]); Tranchemontagne et al. (2009 [triangle]). For complexes with carboxylic acid ligands, see: Bania et al. (2007 [triangle]); Liu et al. (2006 [triangle]); Marsh (2004 [triangle]); Paz & Klinowski (2004 [triangle]); Qin et al. (2008 [triangle]); Shi et al. (2005 [triangle]); Wu et al. (2006 [triangle]); Xu et al. (2005 [triangle]); Ye et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1432-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C11H7O3)4(C12H8N2)2]·4H2O
  • M r = 1405.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1432-efi1.jpg
  • a = 11.7382 (11) Å
  • b = 15.1433 (14) Å
  • c = 18.2059 (13) Å
  • β = 116.430 (4)°
  • V = 2897.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 296 K
  • 0.28 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.804, T max = 0.868
  • 20423 measured reflections
  • 5096 independent reflections
  • 4064 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.063
  • S = 1.03
  • 5096 reflections
  • 406 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043475/bt5107sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043475/bt5107Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the start-up fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (Nos. 2007BSJJ001 and 20801049).

supplementary crystallographic information

Comment

Metallosupramolecular species built from transition metal ions and organic bridging ligands have been rapidly developed in recent years because of their fascinating structural diversities and potential applications as functional materials (Barnett & Champness, 2003; Comba & Schiek, 2003; Telfer & Kuroda, 2003; Robin & Fromm, 2006; Tranchemontagne et al., 2009). The effective and facile approach for the synthesis of such complexes is still the appropriate choice of well designed organic ligands as bridges or terminal groups with metal ions as nodes. Among various ligands, the versatile carboxylic acid ligands, especially for the benzene- and naphthalene-based di- and multi-carboxylic acids, have been most widely employed in the preparation of various CdII–carboxylate complexes (Marsh, 2004; Paz & Klinowski, 2004; Qin et al., 2008; Shi et al., 2005; Wu et al., 2006; Xu et al., 2005). In contrast, the skillful use of monocarboxylic acid ligands with the naphthalene skeleton to construct functional CdII–carboxylate compounds has been less investigated to date (Bania et al., 2007; Liu et al., 2006). In addition, the introduction of 2,2'-bipyridyl-like bidentate chelating molecules, such as 1,10-phenanthroline or 2,2'-bipyridine, as an auxiliary co-ligand into the reaction systems involving carboxylic acids usually leads to new products and commonly reduces dimensionality of the networks formed (Ye et al., 2005). We report here the crystal structure of a CdII complex with mixed 2-naphthol-5-carboxylic acid and 1,10-phenanthroline as ligands.

The structure of the title complex consists of a centrosymmetric dinuclear unit and four lattice water molecules. The CdII center is six-coordinated in an distorted octahedral geometry, by two nitrogen donors atoms from one phenanthroline ligand and four O-atoms from three 2-naphthol-5-carboxylate ligands. For 2-naphthol-5-carboxylate, there exist two different kinds of coordination modes with the CdII center, namely µ111-chelating and µ220-bridging modes. In this manner two CdIIcenter are connected to form a four-membered ring [Cd(1)–O(3)–Cd(1 A)–O(3 A)] with the Cd(1)···Cd(1 A) separation of 3.671 (1) Å (symmetry operation (A) = 1 - x, 1 - y, 1 - z).

Experimental

A mixed solution of 2-naphthol-5-carboxylic acid (0.05 mmol) and 1,10-phenanthroline (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca 0.05 ml for adjusting the pH value to basic condition) was carefully layered on top of a H2O solution (15 ml) of Cd(ClO4)2 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis of the title complex (I) appeared at the tube wall after ca three weeks at room temperature. Yield: ~30% based on 2-naphthol-5-carboxylic acid. Elemental analysis calculated for C68H52Cd2N4O16: C 58.09, H 3.73, N 3.98%; found: C 59.16, H 3.65, N 3.85%. IR (KBr pellet, cm-1): 3403 s (br), 2977m, 2931m, 2770w, 2559w, 1597m, 1554m, 1521 s, 1468w, 1422m, 1377 s, 1302m, 1243m, 1148m, 1100w, 1049w, 953m, 847m, 791m, 767m, 725m, 663m, 604w.

Refinement

All H-atoms were refined as riding with O—H = 0.85Å and C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (C,O).

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (1 – x, 1 – y, 1 – z). Four free water molecules ...

Crystal data

[Cd2(C11H7O3)4(C12H8N2)2]·4H2OF(000) = 1424
Mr = 1405.96Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7382 (11) ÅCell parameters from 5160 reflections
b = 15.1433 (14) Åθ = 2.4–23.9°
c = 18.2059 (13) ŵ = 0.81 mm1
β = 116.430 (4)°T = 296 K
V = 2897.9 (4) Å3Block, yellow
Z = 20.28 × 0.21 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer5096 independent reflections
Radiation source: fine-focus sealed tube4064 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.804, Tmax = 0.868k = −18→18
20423 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.022P)2 + 1.6679P] where P = (Fo2 + 2Fc2)/3
5096 reflections(Δ/σ)max = 0.002
406 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.648118 (18)0.537570 (13)0.499232 (12)0.03367 (7)
O10.64852 (18)0.68046 (12)0.45742 (12)0.0398 (5)
O20.65340 (19)0.67592 (12)0.57928 (12)0.0462 (5)
O30.56800 (17)0.45469 (13)0.57326 (11)0.0410 (5)
O40.51162 (19)0.46283 (14)0.67285 (12)0.0490 (5)
O50.5108 (2)1.04569 (13)0.70518 (13)0.0550 (6)
H5B0.50481.01820.74210.082*
O61.0184 (2)0.17488 (14)0.63847 (15)0.0648 (7)
H6B1.09400.17800.67110.097*
N10.7308 (2)0.42210 (15)0.45474 (14)0.0359 (5)
N20.8635 (2)0.52345 (14)0.59125 (13)0.0332 (5)
C10.6666 (3)0.3693 (2)0.39153 (19)0.0494 (8)
H1A0.57930.37780.36190.059*
C20.7228 (3)0.3020 (2)0.3672 (2)0.0591 (9)
H2A0.67360.26550.32340.071*
C30.8509 (3)0.2903 (2)0.4086 (2)0.0570 (9)
H3A0.89060.24690.39200.068*
C40.9226 (3)0.34400 (19)0.47602 (18)0.0410 (7)
C51.0570 (3)0.3349 (2)0.5234 (2)0.0498 (8)
H5A1.10020.29350.50750.060*
C61.1222 (3)0.3842 (2)0.5897 (2)0.0486 (8)
H6A1.20970.37670.61910.058*
C71.0592 (2)0.44858 (19)0.61633 (17)0.0380 (7)
C81.1219 (3)0.4995 (2)0.6869 (2)0.0549 (9)
H8A1.20890.49250.71900.066*
C91.0569 (3)0.5592 (2)0.7088 (2)0.0566 (9)
H9A1.09810.59260.75630.068*
C100.9269 (3)0.5697 (2)0.65892 (18)0.0433 (7)
H10A0.88280.61130.67400.052*
C110.9278 (2)0.46242 (17)0.56963 (16)0.0307 (6)
C120.8583 (3)0.40913 (17)0.49782 (16)0.0323 (6)
C130.6536 (2)0.71904 (18)0.52027 (18)0.0363 (7)
C140.6668 (2)0.81874 (18)0.52391 (16)0.0347 (6)
C150.7268 (3)0.85596 (19)0.48148 (17)0.0386 (7)
H15A0.75170.82000.44980.046*
C160.7511 (3)0.94664 (19)0.48501 (18)0.0427 (7)
H16A0.79180.97040.45590.051*
C170.7152 (3)1.0001 (2)0.53121 (17)0.0423 (7)
H17A0.73401.06010.53470.051*
C180.6500 (2)0.96592 (18)0.57379 (16)0.0340 (6)
C190.6096 (3)1.02198 (19)0.61936 (17)0.0404 (7)
H19A0.62621.08220.62130.048*
C200.5467 (3)0.98935 (19)0.66048 (17)0.0398 (7)
C210.5185 (3)0.89926 (19)0.65634 (18)0.0442 (7)
H21A0.47430.87740.68400.053*
C220.5550 (3)0.84284 (19)0.61223 (18)0.0410 (7)
H22A0.53390.78330.60950.049*
C230.6245 (2)0.87360 (17)0.57055 (16)0.0335 (6)
C240.5938 (3)0.44834 (18)0.64928 (17)0.0367 (7)
C250.7267 (3)0.42322 (18)0.70921 (16)0.0347 (6)
C260.7973 (3)0.35801 (17)0.69061 (16)0.0338 (6)
C270.7474 (3)0.30337 (18)0.61980 (18)0.0424 (7)
H27A0.66190.30820.58270.051*
C280.8219 (3)0.24406 (19)0.60497 (19)0.0480 (8)
H28A0.78650.20930.55800.058*
C290.9512 (3)0.23452 (19)0.6594 (2)0.0472 (8)
C301.0025 (3)0.28396 (19)0.72909 (18)0.0435 (7)
H30A1.08800.27710.76550.052*
C310.9281 (3)0.34535 (18)0.74713 (17)0.0365 (7)
C320.9808 (3)0.3957 (2)0.81986 (17)0.0436 (7)
H32A1.06590.38790.85670.052*
C330.9095 (3)0.4554 (2)0.83720 (17)0.0464 (8)
H33A0.94550.48720.88590.056*
C340.7818 (3)0.4687 (2)0.78147 (17)0.0426 (7)
H34A0.73350.50930.79390.051*
O1W0.5418 (2)0.73556 (15)0.79947 (13)0.0609 (6)
H10.54210.68250.81490.073*
H20.56600.75800.84690.073*
O2W0.7302 (2)0.68503 (16)0.75316 (14)0.0703 (7)
H30.68020.70350.77210.084*
H40.70560.69870.70310.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02669 (11)0.03283 (12)0.04132 (13)0.00375 (9)0.01496 (9)0.00190 (10)
O10.0447 (12)0.0340 (11)0.0414 (12)0.0026 (9)0.0198 (10)−0.0031 (9)
O20.0598 (14)0.0343 (11)0.0479 (13)0.0056 (10)0.0270 (11)0.0014 (10)
O30.0316 (10)0.0542 (13)0.0301 (11)−0.0029 (9)0.0075 (9)0.0117 (9)
O40.0383 (12)0.0630 (14)0.0435 (12)0.0081 (11)0.0163 (10)−0.0038 (11)
O50.0792 (16)0.0432 (13)0.0489 (13)0.0118 (12)0.0342 (12)−0.0012 (10)
O60.0744 (16)0.0466 (14)0.0730 (17)0.0131 (12)0.0324 (14)−0.0038 (12)
N10.0318 (13)0.0312 (13)0.0397 (14)0.0015 (10)0.0115 (11)0.0006 (11)
N20.0292 (12)0.0337 (13)0.0361 (13)0.0014 (10)0.0139 (10)−0.0006 (10)
C10.0446 (18)0.0463 (19)0.0471 (19)−0.0024 (15)0.0114 (16)−0.0044 (16)
C20.067 (2)0.046 (2)0.056 (2)−0.0020 (18)0.0203 (19)−0.0174 (17)
C30.069 (2)0.0444 (19)0.061 (2)0.0089 (18)0.033 (2)−0.0127 (17)
C40.0452 (18)0.0364 (16)0.0466 (18)0.0077 (14)0.0252 (15)0.0014 (14)
C50.050 (2)0.0442 (19)0.066 (2)0.0179 (16)0.0366 (18)0.0073 (17)
C60.0339 (17)0.057 (2)0.058 (2)0.0144 (15)0.0232 (16)0.0130 (17)
C70.0286 (15)0.0434 (17)0.0413 (17)0.0048 (13)0.0150 (13)0.0091 (14)
C80.0307 (16)0.073 (2)0.048 (2)0.0028 (16)0.0065 (15)−0.0003 (18)
C90.0446 (19)0.070 (2)0.0421 (19)−0.0030 (17)0.0071 (16)−0.0167 (17)
C100.0415 (18)0.0455 (17)0.0406 (18)0.0021 (14)0.0163 (15)−0.0077 (14)
C110.0273 (14)0.0303 (14)0.0359 (15)0.0041 (12)0.0153 (12)0.0036 (13)
C120.0336 (15)0.0288 (14)0.0366 (15)0.0026 (12)0.0175 (13)0.0048 (13)
C130.0286 (15)0.0334 (16)0.0427 (18)0.0056 (12)0.0121 (14)0.0006 (14)
C140.0280 (14)0.0348 (15)0.0349 (16)0.0049 (12)0.0083 (13)0.0021 (12)
C150.0352 (16)0.0419 (17)0.0360 (16)0.0018 (13)0.0134 (13)0.0005 (13)
C160.0426 (17)0.0462 (19)0.0410 (17)−0.0068 (14)0.0202 (15)0.0031 (14)
C170.0462 (18)0.0326 (15)0.0426 (18)−0.0050 (14)0.0148 (15)0.0028 (14)
C180.0309 (14)0.0323 (15)0.0297 (14)0.0017 (13)0.0053 (12)0.0023 (13)
C190.0437 (17)0.0351 (17)0.0333 (16)0.0014 (14)0.0091 (14)0.0011 (13)
C200.0432 (17)0.0392 (17)0.0327 (16)0.0085 (14)0.0130 (14)0.0006 (13)
C210.0475 (18)0.0427 (18)0.0476 (18)0.0024 (15)0.0259 (15)0.0053 (15)
C220.0408 (17)0.0339 (16)0.0490 (18)0.0008 (13)0.0206 (15)0.0017 (14)
C230.0309 (15)0.0321 (15)0.0309 (15)0.0026 (12)0.0078 (12)0.0038 (12)
C240.0340 (16)0.0339 (16)0.0351 (16)−0.0029 (13)0.0091 (13)0.0011 (13)
C250.0339 (15)0.0378 (15)0.0297 (15)0.0010 (13)0.0118 (13)0.0065 (13)
C260.0359 (15)0.0317 (15)0.0300 (15)−0.0030 (12)0.0111 (13)0.0048 (12)
C270.0440 (17)0.0339 (16)0.0391 (17)−0.0035 (14)0.0095 (14)0.0031 (14)
C280.062 (2)0.0311 (16)0.0436 (18)−0.0045 (15)0.0170 (17)−0.0027 (14)
C290.062 (2)0.0304 (16)0.055 (2)0.0074 (15)0.0315 (18)0.0066 (15)
C300.0400 (17)0.0386 (17)0.0448 (19)0.0066 (14)0.0124 (15)0.0089 (15)
C310.0370 (16)0.0338 (16)0.0342 (16)0.0014 (13)0.0119 (13)0.0077 (13)
C320.0370 (16)0.0505 (19)0.0340 (16)0.0031 (15)0.0076 (14)0.0050 (14)
C330.0462 (18)0.055 (2)0.0288 (15)−0.0015 (16)0.0087 (14)−0.0054 (15)
C340.0422 (17)0.0482 (18)0.0359 (16)0.0041 (15)0.0161 (14)0.0001 (15)
O1W0.0763 (16)0.0583 (15)0.0430 (13)−0.0083 (13)0.0220 (12)−0.0003 (11)
O2W0.0676 (16)0.0829 (18)0.0647 (16)0.0084 (14)0.0332 (13)0.0077 (14)

Geometric parameters (Å, °)

Cd1—O3i2.2827 (18)C11—C121.441 (4)
Cd1—O12.2945 (18)C13—C141.516 (4)
Cd1—N12.314 (2)C14—C151.377 (4)
Cd1—O32.3247 (18)C14—C231.426 (4)
Cd1—N22.339 (2)C15—C161.398 (4)
Cd1—O22.5370 (19)C15—H15A0.9300
Cd1—C132.771 (3)C16—C171.363 (4)
Cd1—O4i2.846 (2)C16—H16A0.9300
Cd1—Cd1i3.6706 (5)C17—C181.408 (4)
O1—C131.262 (3)C17—H17A0.9300
O2—C131.258 (3)C18—C191.409 (4)
O3—C241.282 (3)C18—C231.425 (4)
O3—Cd1i2.2827 (18)C19—C201.357 (4)
O4—C241.238 (3)C19—H19A0.9300
O4—Cd1i2.846 (2)C20—C211.398 (4)
O5—C201.369 (3)C21—C221.366 (4)
O5—H5B0.8200C21—H21A0.9300
O6—C291.360 (3)C22—C231.418 (4)
O6—H6B0.8200C22—H22A0.9300
N1—C11.326 (4)C24—C251.501 (4)
N1—C121.360 (3)C25—C341.366 (4)
N2—C101.322 (3)C25—C261.424 (4)
N2—C111.358 (3)C26—C271.420 (4)
C1—C21.389 (4)C26—C311.431 (4)
C1—H1A0.9300C27—C281.362 (4)
C2—C31.361 (4)C27—H27A0.9300
C2—H2A0.9300C28—C291.403 (4)
C3—C41.399 (4)C28—H28A0.9300
C3—H3A0.9300C29—C301.362 (4)
C4—C121.402 (4)C30—C311.411 (4)
C4—C51.428 (4)C30—H30A0.9300
C5—C61.334 (4)C31—C321.410 (4)
C5—H5A0.9300C32—C331.360 (4)
C6—C71.432 (4)C32—H32A0.9300
C6—H6A0.9300C33—C341.402 (4)
C7—C81.394 (4)C33—H33A0.9300
C7—C111.406 (4)C34—H34A0.9300
C8—C91.353 (4)O1W—H10.8500
C8—H8A0.9300O1W—H20.8500
C9—C101.395 (4)O2W—H30.8499
C9—H9A0.9300O2W—H40.8502
C10—H10A0.9300
O3i—Cd1—O185.73 (7)C9—C10—H10A118.5
O3i—Cd1—N1111.57 (8)N2—C11—C7121.9 (2)
O1—Cd1—N1122.24 (7)N2—C11—C12118.7 (2)
O3i—Cd1—O374.38 (7)C7—C11—C12119.4 (2)
O1—Cd1—O3139.69 (7)N1—C12—C4122.1 (3)
N1—Cd1—O397.80 (8)N1—C12—C11118.4 (2)
O3i—Cd1—N2170.86 (7)C4—C12—C11119.5 (2)
O1—Cd1—N299.36 (7)O2—C13—O1121.1 (3)
N1—Cd1—N272.17 (8)O2—C13—C14121.2 (3)
O3—Cd1—N297.04 (7)O1—C13—C14117.6 (3)
O3i—Cd1—O291.52 (7)O2—C13—Cd166.08 (15)
O1—Cd1—O253.75 (7)O1—C13—Cd155.04 (14)
N1—Cd1—O2156.67 (7)C14—C13—Cd1171.5 (2)
O3—Cd1—O291.47 (7)C15—C14—C23119.8 (3)
N2—Cd1—O285.51 (7)C15—C14—C13116.8 (3)
O3i—Cd1—C1388.87 (7)C23—C14—C13123.4 (3)
O1—Cd1—C1326.80 (7)C14—C15—C16121.4 (3)
N1—Cd1—C13144.11 (8)C14—C15—H15A119.3
O3—Cd1—C13116.46 (8)C16—C15—H15A119.3
N2—Cd1—C1392.32 (8)C17—C16—C15119.9 (3)
O2—Cd1—C1326.95 (7)C17—C16—H16A120.0
O3i—Cd1—O4i49.13 (6)C15—C16—H16A120.0
O1—Cd1—O4i74.60 (6)C16—C17—C18121.0 (3)
N1—Cd1—O4i77.68 (7)C16—C17—H17A119.5
O3—Cd1—O4i113.50 (6)C18—C17—H17A119.5
N2—Cd1—O4i139.51 (7)C17—C18—C19120.7 (3)
O2—Cd1—O4i118.02 (6)C17—C18—C23119.6 (3)
C13—Cd1—O4i96.75 (7)C19—C18—C23119.7 (3)
O3i—Cd1—Cd1i37.58 (5)C20—C19—C18120.9 (3)
O1—Cd1—Cd1i115.89 (5)C20—C19—H19A119.5
N1—Cd1—Cd1i108.34 (6)C18—C19—H19A119.5
O3—Cd1—Cd1i36.79 (4)C19—C20—O5119.2 (3)
N2—Cd1—Cd1i133.75 (5)C19—C20—C21120.0 (3)
O2—Cd1—Cd1i91.87 (5)O5—C20—C21120.8 (3)
C13—Cd1—Cd1i105.66 (6)C22—C21—C20120.9 (3)
O4i—Cd1—Cd1i81.11 (4)C22—C21—H21A119.5
C13—O1—Cd198.15 (17)C20—C21—H21A119.5
C13—O2—Cd186.96 (16)C21—C22—C23121.0 (3)
C24—O3—Cd1i107.21 (16)C21—C22—H22A119.5
C24—O3—Cd1134.76 (17)C23—C22—H22A119.5
Cd1i—O3—Cd1105.62 (7)C22—C23—C18117.4 (3)
C24—O4—Cd1i81.45 (16)C22—C23—C14124.3 (3)
C20—O5—H5B109.5C18—C23—C14118.3 (3)
C29—O6—H6B109.5O4—C24—O3121.0 (3)
C1—N1—C12117.9 (2)O4—C24—C25120.7 (3)
C1—N1—Cd1126.5 (2)O3—C24—C25118.3 (2)
C12—N1—Cd1115.64 (17)C34—C25—C26120.2 (3)
C10—N2—C11118.4 (2)C34—C25—C24117.8 (3)
C10—N2—Cd1126.87 (19)C26—C25—C24122.0 (2)
C11—N2—Cd1114.69 (16)C27—C26—C25124.9 (3)
N1—C1—C2123.5 (3)C27—C26—C31116.8 (3)
N1—C1—H1A118.3C25—C26—C31118.3 (2)
C2—C1—H1A118.3C28—C27—C26121.5 (3)
C3—C2—C1119.0 (3)C28—C27—H27A119.2
C3—C2—H2A120.5C26—C27—H27A119.2
C1—C2—H2A120.5C27—C28—C29121.1 (3)
C2—C3—C4119.6 (3)C27—C28—H28A119.4
C2—C3—H3A120.2C29—C28—H28A119.4
C4—C3—H3A120.2O6—C29—C30123.7 (3)
C3—C4—C12117.9 (3)O6—C29—C28116.8 (3)
C3—C4—C5123.0 (3)C30—C29—C28119.5 (3)
C12—C4—C5119.1 (3)C29—C30—C31121.1 (3)
C6—C5—C4121.9 (3)C29—C30—H30A119.4
C6—C5—H5A119.1C31—C30—H30A119.4
C4—C5—H5A119.1C32—C31—C30121.1 (3)
C5—C6—C7120.8 (3)C32—C31—C26119.0 (3)
C5—C6—H6A119.6C30—C31—C26119.9 (3)
C7—C6—H6A119.6C33—C32—C31121.3 (3)
C8—C7—C11117.5 (3)C33—C32—H32A119.4
C8—C7—C6123.2 (3)C31—C32—H32A119.4
C11—C7—C6119.3 (3)C32—C33—C34119.9 (3)
C9—C8—C7120.4 (3)C32—C33—H33A120.1
C9—C8—H8A119.8C34—C33—H33A120.1
C7—C8—H8A119.8C25—C34—C33121.3 (3)
C8—C9—C10118.8 (3)C25—C34—H34A119.3
C8—C9—H9A120.6C33—C34—H34A119.3
C10—C9—H9A120.6H1—O1W—H295.3
N2—C10—C9123.1 (3)H3—O2W—H4112.8
N2—C10—H10A118.5
O3i—Cd1—O1—C1395.96 (16)C3—C4—C12—N1−1.3 (4)
N1—Cd1—O1—C13−151.16 (15)C5—C4—C12—N1179.1 (3)
O3—Cd1—O1—C1336.3 (2)C3—C4—C12—C11176.6 (3)
N2—Cd1—O1—C13−76.40 (17)C5—C4—C12—C11−3.0 (4)
O2—Cd1—O1—C130.94 (15)N2—C11—C12—N1−0.2 (4)
O4i—Cd1—O1—C13144.66 (17)C7—C11—C12—N1178.4 (2)
Cd1i—Cd1—O1—C1372.82 (16)N2—C11—C12—C4−178.1 (2)
O3i—Cd1—O2—C13−84.52 (16)C7—C11—C12—C40.4 (4)
O1—Cd1—O2—C13−0.94 (15)Cd1—O2—C13—O11.6 (3)
N1—Cd1—O2—C1387.3 (2)Cd1—O2—C13—C14−175.2 (2)
O3—Cd1—O2—C13−158.93 (16)Cd1—O1—C13—O2−1.8 (3)
N2—Cd1—O2—C13104.13 (16)Cd1—O1—C13—C14175.09 (19)
O4i—Cd1—O2—C13−41.20 (17)O3i—Cd1—C13—O295.57 (16)
Cd1i—Cd1—O2—C13−122.12 (15)O1—Cd1—C13—O2178.3 (3)
O3i—Cd1—O3—C24−135.2 (3)N1—Cd1—C13—O2−137.55 (16)
O1—Cd1—O3—C24−71.9 (3)O3—Cd1—C13—O223.67 (17)
N1—Cd1—O3—C24114.5 (3)N2—Cd1—C13—O2−75.37 (16)
N2—Cd1—O3—C2441.6 (3)O4i—Cd1—C13—O2144.16 (15)
O2—Cd1—O3—C24−44.1 (3)Cd1i—Cd1—C13—O261.53 (16)
C13—Cd1—O3—C24−54.6 (3)O3i—Cd1—C13—O1−82.76 (16)
O4i—Cd1—O3—C24−165.6 (2)N1—Cd1—C13—O144.1 (2)
Cd1i—Cd1—O3—C24−135.2 (3)O3—Cd1—C13—O1−154.66 (15)
O3i—Cd1—O3—Cd1i0.0N2—Cd1—C13—O1106.30 (16)
O1—Cd1—O3—Cd1i63.32 (13)O2—Cd1—C13—O1−178.3 (3)
N1—Cd1—O3—Cd1i−110.30 (9)O4i—Cd1—C13—O1−34.17 (16)
N2—Cd1—O3—Cd1i176.82 (8)Cd1i—Cd1—C13—O1−116.79 (15)
O2—Cd1—O3—Cd1i91.16 (8)O2—C13—C14—C15148.9 (3)
C13—Cd1—O3—Cd1i80.68 (9)O1—C13—C14—C15−28.0 (4)
O4i—Cd1—O3—Cd1i−30.40 (10)O2—C13—C14—C23−28.9 (4)
O3i—Cd1—N1—C14.9 (3)O1—C13—C14—C23154.2 (3)
O1—Cd1—N1—C1−94.0 (2)C23—C14—C15—C162.0 (4)
O3—Cd1—N1—C181.1 (2)C13—C14—C15—C16−175.9 (3)
N2—Cd1—N1—C1176.0 (3)C14—C15—C16—C170.0 (4)
O2—Cd1—N1—C1−166.4 (2)C15—C16—C17—C18−2.0 (4)
C13—Cd1—N1—C1−115.8 (2)C16—C17—C18—C19−178.0 (3)
O4i—Cd1—N1—C1−31.4 (2)C16—C17—C18—C231.9 (4)
Cd1i—Cd1—N1—C144.8 (2)C17—C18—C19—C20180.0 (3)
O3i—Cd1—N1—C12−176.18 (17)C23—C18—C19—C200.1 (4)
O1—Cd1—N1—C1284.91 (19)C18—C19—C20—O5178.9 (2)
O3—Cd1—N1—C12−99.96 (18)C18—C19—C20—C21−1.6 (4)
N2—Cd1—N1—C12−5.04 (18)C19—C20—C21—C220.9 (4)
O2—Cd1—N1—C1212.6 (3)O5—C20—C21—C22−179.6 (3)
C13—Cd1—N1—C1263.1 (2)C20—C21—C22—C231.2 (4)
O4i—Cd1—N1—C12147.59 (19)C21—C22—C23—C18−2.5 (4)
Cd1i—Cd1—N1—C12−136.24 (17)C21—C22—C23—C14179.5 (3)
O1—Cd1—N2—C1061.9 (2)C17—C18—C23—C22−178.0 (3)
N1—Cd1—N2—C10−177.1 (2)C19—C18—C23—C221.9 (4)
O2—Cd1—N2—C109.8 (2)C17—C18—C23—C140.2 (4)
C13—Cd1—N2—C1035.9 (2)C19—C18—C23—C14−180.0 (2)
O4i—Cd1—N2—C10139.1 (2)C15—C14—C23—C22176.0 (3)
Cd1i—Cd1—N2—C10−78.5 (2)C13—C14—C23—C22−6.3 (4)
O1—Cd1—N2—C11−116.08 (18)C15—C14—C23—C18−2.1 (4)
N1—Cd1—N2—C114.91 (17)C13—C14—C23—C18175.7 (2)
O2—Cd1—N2—C11−168.20 (18)Cd1i—O4—C24—O39.9 (2)
C13—Cd1—N2—C11−142.10 (18)Cd1i—O4—C24—C25−170.3 (3)
O4i—Cd1—N2—C11−38.9 (2)Cd1i—O3—C24—O4−12.9 (3)
Cd1i—Cd1—N2—C11103.51 (17)Cd1—O3—C24—O4121.9 (3)
C12—N1—C1—C2−0.1 (4)Cd1i—O3—C24—C25167.38 (19)
Cd1—N1—C1—C2178.8 (2)Cd1—O3—C24—C25−57.8 (4)
N1—C1—C2—C3−1.8 (5)O4—C24—C25—C34−43.3 (4)
C1—C2—C3—C42.1 (5)O3—C24—C25—C34136.4 (3)
C2—C3—C4—C12−0.7 (5)O4—C24—C25—C26140.3 (3)
C2—C3—C4—C5178.9 (3)O3—C24—C25—C26−40.0 (4)
C3—C4—C5—C6−176.8 (3)C34—C25—C26—C27176.1 (3)
C12—C4—C5—C62.8 (5)C24—C25—C26—C27−7.6 (4)
C4—C5—C6—C70.2 (5)C34—C25—C26—C31−3.4 (4)
C5—C6—C7—C8177.5 (3)C24—C25—C26—C31172.8 (2)
C5—C6—C7—C11−2.8 (4)C25—C26—C27—C28178.1 (3)
C11—C7—C8—C90.5 (5)C31—C26—C27—C28−2.4 (4)
C6—C7—C8—C9−179.9 (3)C26—C27—C28—C290.1 (4)
C7—C8—C9—C10−1.1 (5)C27—C28—C29—O6−178.7 (3)
C11—N2—C10—C90.4 (4)C27—C28—C29—C301.5 (5)
Cd1—N2—C10—C9−177.5 (2)O6—C29—C30—C31179.5 (3)
C8—C9—C10—N20.7 (5)C28—C29—C30—C31−0.7 (4)
C10—N2—C11—C7−1.0 (4)C29—C30—C31—C32179.1 (3)
Cd1—N2—C11—C7177.1 (2)C29—C30—C31—C26−1.6 (4)
C10—N2—C11—C12177.4 (2)C27—C26—C31—C32−177.7 (2)
Cd1—N2—C11—C12−4.4 (3)C25—C26—C31—C321.9 (4)
C8—C7—C11—N20.6 (4)C27—C26—C31—C303.1 (4)
C6—C7—C11—N2−179.0 (3)C25—C26—C31—C30−177.3 (2)
C8—C7—C11—C12−177.9 (3)C30—C31—C32—C33179.6 (3)
C6—C7—C11—C122.5 (4)C26—C31—C32—C330.3 (4)
C1—N1—C12—C41.7 (4)C31—C32—C33—C34−1.1 (5)
Cd1—N1—C12—C4−177.4 (2)C26—C25—C34—C332.7 (4)
C1—N1—C12—C11−176.2 (2)C24—C25—C34—C33−173.7 (3)
Cd1—N1—C12—C114.7 (3)C32—C33—C34—C25−0.4 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1···O5ii0.852.152.934 (3)154
O1W—H2···O1iii0.852.032.872 (3)170
O2W—H3···O1W0.851.962.801 (4)170
O2W—H4···O20.852.082.883 (3)156
O5—H5B···O4iv0.821.842.664 (3)176
O6—H6B···O2Wv0.821.912.728 (4)180

Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y+1/2, −z+3/2; (v) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5107).

References

  • Bania, K., Barooah, N. & Baruah, J. B. (2007). Polyhedron, 26, 2612–2620.
  • Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev 246, 145–168.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Comba, P. & Schiek, W. (2003). Coord. Chem. Rev 21, 238–239.
  • Liu, C.-S., Shi, X.-S., Li, J.-R., Wang, J.-J. & Bu, X.-H. (2006). Cryst. Growth Des 6, 656–663.
  • Marsh, R. E. (2004). Acta Cryst. B60, 252–253. [PubMed]
  • Paz, F. A. A. & Klinowski, J. (2004). J. Solid State Chem 177, 3423–3432.
  • Qin, C., Wang, X.-L. & Wang, E.-B. (2008). Acta Cryst. C64, m73–m75. [PubMed]
  • Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev 250, 2127–2157.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, X., Zhu, G., Wang, X., Li, G., Fang, Q., Zhao, X., Wu, G., Tian, G., Xue, M., Wang, R. & Qiu, S. (2005). Cryst. Growth Des 5, 341–346.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Telfer, S. G. & Kuroda, R. (2003). Coord. Chem. Rev 242, 33–46.
  • Tranchemontagne, D. J., Mendoza-Cortes, J. L., O’Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev 38, 1257–1283. [PubMed]
  • Wu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct 796, 69–75.
  • Xu, Y., Yuan, D., Wu, B., Jiang, F., Zhou, Y. & Hong, M. (2005). Inorg. Chem. Commun 8, 651–655.
  • Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev.249, 545–565.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography