PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1457.
Published online 2009 October 28. doi:  10.1107/S1600536809043694
PMCID: PMC2971042

Dianilinedibromidozinc(II)

Abstract

In the title compound, [ZnBr2(C6H7N)2], the Zn atom (site symmetry 2) adopts a distorted tetra­hedral ZnN2Br2 geometry. In the crystal, mol­ecules are linked by N—H(...)Br hydrogen bonds, generating sheets containing R 2 2(8) loops.

Related literature

For background to the applications of zinc complexes, see: Ibrahim et al. (2003 [triangle]); Nesterova et al. (2005 [triangle]); Park et al. (2008 [triangle]); Wu et al. (2008 [triangle]). For graph-set theory, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1457-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C6H7N)2]
  • M r = 411.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1457-efi4.jpg
  • a = 25.7545 (16) Å
  • b = 4.9415 (3) Å
  • c = 12.1919 (8) Å
  • β = 111.035 (3)°
  • V = 1448.21 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.19 mm−1
  • T = 296 K
  • 0.43 × 0.41 × 0.40 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: none
  • 7092 measured reflections
  • 1796 independent reflections
  • 1489 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.068
  • S = 1.18
  • 1796 reflections
  • 86 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043694/hb5146sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043694/hb5146Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the Materials Chemistry Laboratry, GC University, Pakistan, for the use of the diffractometer.

supplementary crystallographic information

Comment

Researches have worked on synthesis and X-ray studies of organo-zinc complexes for their applications in catalysis (Ibrahim et al., 2003, Park et al., 2008) and supramolecular chemistry (Nesterova et al., 2005). These complexes act as fluorescent probe for labeling proteins (Wu et al., 2008). Herein, we report the synthesis and crystal structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The compound crystallizes in the space group C2/c with Z' = 1/2. The ZnII ion is located on a 2-fold axis and is coordinated by two Br atoms [Zn1—Br/Br1iii = 2.3851 (3) Å] and two amino N atoms from aniline ligands [Zn1—N1/N1iii = 2.057 (2) Å] [symmetry code: (iii) 1 - x, y, 3/2 - z]. The geometry around the ZnII ion is that of a tetrahedron. The benzene ring plane is approximately planar, with maximum deviation from the least-squares plane being 0.004 (2)Å for atom C2.

Molecules of the title compound are linked in to shetts by a combination of N—H···Br hydrogen bonds (Table 1). Amino atom N1 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via H2A, respectively, to atom Br1 in the molecule at (x, y - 1, z), so forming a C(4)[R22(8)] (Bernstein et al., 1995) chain of rings running parallel to the [010] direction (Fig. 2). Similarly, amino atom N1 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via H1A, respectively, to atom Br1 in the molecule at (x, -y, z - 1/2), so forming a C(4)[R22(8)] chain of rings running parallel to the [001] direction and centrosymmetric R22(8) ring centred at (1/2, 0, 1/2) (Fig. 3).

Experimental

Zinc bromide (1.125 g, 5 mmol) was added to distilled water (20 ml). Aniline (0.93 g, 10 mmol) was added to the above solution and stirred at room temperature for 5 minutes. White precipitate formed was filtered off, washed with distilled water, dried and recrystallized in methanol to yield colourless blocks of (I).

Refinement

All C-bonded H atoms were refined using a riding model, with C—H distances constrained to 0.93Å and with Uiso = 1.2Ueq(C). Amino H atoms were located in difference map and refined freely.

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. [Symmety code: (iii) 1 - x, y, 3/2 - z.]
Fig. 2.
Part of the crystal structure of the title compound, showing the formation of an R22(8) dimer along [010].
Fig. 3.
Part of the crystal structure of the title compound, showing the formation of an R22(8) dimer along [001]. Hydrogen bonds are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table ...

Crystal data

[ZnBr2(C6H7N)2]Z = 4
Mr = 411.44F(000) = 800
Monoclinic, C2/cDx = 1.887 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.7545 (16) ÅCell parameters from 7092 reflections
b = 4.9415 (3) ŵ = 7.19 mm1
c = 12.1919 (8) ÅT = 296 K
β = 111.035 (3)°Block, colourless
V = 1448.21 (16) Å30.43 × 0.41 × 0.40 mm

Data collection

Bruker APEXII CCD diffractometer1489 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 28.3°, θmin = 1.7°
[var phi] and ω scansh = −34→32
7092 measured reflectionsk = −4→6
1796 independent reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.18w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3
1796 reflections(Δ/σ)max = 0.001
86 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.61172 (10)−0.0453 (4)0.7448 (2)0.0332 (5)
C20.65438 (13)−0.1002 (6)0.8489 (3)0.0483 (7)
H20.6498−0.23030.89980.058*
C30.70386 (14)0.0379 (7)0.8775 (3)0.0618 (8)
H30.7328−0.00130.94750.074*
C40.71102 (14)0.2333 (7)0.8038 (3)0.0620 (9)
H40.74450.32690.82400.074*
C50.66823 (14)0.2887 (6)0.7000 (3)0.0543 (8)
H50.67280.42000.64950.065*
C60.61856 (12)0.1502 (5)0.6703 (2)0.0428 (6)
H60.58970.18870.60010.051*
N10.55851 (9)−0.1809 (4)0.7147 (2)0.0350 (5)
H1A0.5450 (13)−0.231 (6)0.638 (3)0.052 (8)*
H2A0.5592 (14)−0.334 (6)0.750 (3)0.058 (9)*
Zn10.50000.05076 (7)0.75000.03217 (12)
Br10.546312 (11)0.32589 (5)0.91739 (2)0.04053 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0370 (14)0.0280 (12)0.0384 (13)0.0019 (10)0.0181 (11)−0.0068 (9)
C20.0499 (18)0.0449 (14)0.0472 (16)0.0039 (14)0.0136 (14)0.0063 (13)
C30.0452 (19)0.064 (2)0.063 (2)0.0048 (16)0.0033 (16)−0.0045 (16)
C40.048 (2)0.0555 (18)0.085 (3)−0.0135 (15)0.0271 (19)−0.0186 (18)
C50.057 (2)0.0478 (16)0.069 (2)−0.0092 (14)0.0348 (18)−0.0008 (14)
C60.0466 (17)0.0427 (15)0.0412 (15)−0.0038 (12)0.0184 (13)−0.0023 (11)
N10.0406 (13)0.0297 (11)0.0374 (12)−0.0024 (9)0.0176 (10)−0.0032 (9)
Zn10.0379 (2)0.0308 (2)0.0310 (2)0.0000.01626 (18)0.000
Br10.0558 (2)0.03761 (16)0.02807 (15)−0.00087 (11)0.01487 (12)−0.00366 (9)

Geometric parameters (Å, °)

C1—C21.375 (4)C5—C61.380 (4)
C1—C61.380 (3)C5—H50.9300
C1—N11.450 (3)C6—H60.9300
C2—C31.376 (4)N1—H1A0.90 (3)
C2—H20.9300N1—H2A0.87 (3)
C3—C41.376 (5)Zn1—N12.057 (2)
C3—H30.9300Zn1—N1i2.057 (2)
C4—C51.375 (5)Zn1—Br12.3851 (3)
C4—H40.9300Zn1—Br1i2.3851 (3)
C2—C1—C6119.8 (2)C5—C6—C1120.0 (3)
C2—C1—N1120.8 (2)C5—C6—H6120.0
C6—C1—N1119.3 (2)C1—C6—H6120.0
C1—C2—C3119.8 (3)C1—N1—Zn1112.76 (14)
C1—C2—H2120.1C1—N1—H1A111.5 (19)
C3—C2—H2120.1Zn1—N1—H1A109 (2)
C2—C3—C4120.8 (3)C1—N1—H2A115 (2)
C2—C3—H3119.6Zn1—N1—H2A106 (2)
C4—C3—H3119.6H1A—N1—H2A102 (3)
C5—C4—C3119.4 (3)N1i—Zn1—N1112.35 (13)
C5—C4—H4120.3N1i—Zn1—Br1108.50 (7)
C3—C4—H4120.3N1—Zn1—Br1108.50 (7)
C4—C5—C6120.3 (3)N1i—Zn1—Br1i108.50 (7)
C4—C5—H5119.9N1—Zn1—Br1i108.50 (7)
C6—C5—H5119.9Br1—Zn1—Br1i110.49 (5)
C6—C1—C2—C3−0.8 (4)N1—C1—C6—C5177.4 (2)
N1—C1—C2—C3−177.7 (2)C2—C1—N1—Zn198.8 (2)
C1—C2—C3—C40.8 (5)C6—C1—N1—Zn1−78.1 (2)
C2—C3—C4—C5−0.5 (5)C1—N1—Zn1—N1i−152.2 (2)
C3—C4—C5—C60.2 (5)C1—N1—Zn1—Br1−32.26 (19)
C4—C5—C6—C1−0.2 (4)C1—N1—Zn1—Br1i87.82 (17)
C2—C1—C6—C50.5 (4)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.90 (3)2.75 (3)3.597 (3)157 (2)
N1—H2A···Br1iii0.87 (3)2.76 (3)3.564 (3)156 (3)

Symmetry codes: (ii) x, −y, z−1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5146).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ibrahim, M. M., Ichikawa, K. & Shiro, M. (2003). Inorg. Chim. Acta, 353, 187–196.
  • Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2005). Inorg. Chim. Acta, 358, 2725–2738.
  • Park, B. K., Lee, H. S., Lee, E. Y., Kwak, H., Lee, Y. M., Lee, Y. J., Jun, J. Y., Kim, C., Kim, S. J. & Kim, Y. (2008). J. Mol. Struct.890, 123–129.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, F. Y., Xie, F. Y., Wu, Y.-M. & Hong, J.-I. (2008). Spectrochim. Acta Part A, 70, 1127–1133. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography