PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2814.
Published online 2009 October 23. doi:  10.1107/S1600536809042330
PMCID: PMC2971041

2-[(N-Benzyl-4-methyl­benzene­sul­fon­amido)meth­yl]pyridinium nitrate

Abstract

In the title compound, C20H21N2O2S+·NO3 , the dihedral angle between the pyridinium and phenyl rings is 81.77 (19)°, that between the pyridinium and tolyl rings is 1.36 (18)°, and that between the phenyl and tolyl rings is 82.69 (19)°. In the crystal, the components are linked by strong charge-assisted bifurcated N+—H(...)(O,O) hydrogen bonds and the packing is consolidated by numerous weak C—H(...)O bonds and π–π stacking inter­actions [for the latter, centroid–centroid separation = 3.868 (2) Å].

Related literature

For the preparation of the title compound and for a related structure, see: Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2814-scheme1.jpg

Experimental

Crystal data

  • C20H21N2O2S+·NO3
  • M r = 415.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2814-efi1.jpg
  • a = 7.6852 (15) Å
  • b = 9.811 (2) Å
  • c = 13.240 (3) Å
  • α = 104.26 (3)°
  • β = 91.82 (3)°
  • γ = 95.64 (2)°
  • V = 961.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 113 K
  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.960, T max = 0.976
  • 7087 measured reflections
  • 3355 independent reflections
  • 2020 reflections with I > 2σ(I)
  • R int = 0.099

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077
  • wR(F 2) = 0.188
  • S = 0.94
  • 3355 reflections
  • 267 parameters
  • 18 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.76 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042330/hb5137sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042330/hb5137Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Changsha University of Science and Technology Talent Fund (project No. 1004214)

supplementary crystallographic information

Comment

The molecular structure of (I) (Fig. 1) shows that the nitrate is connected with its corresponding pyridinium via two strong charge-assisted N+—H···O hydrogen bonds. In the cation, the dihedral angle between the pyridinium and phenyl rings is 81.774 (9)°, that between the pyridinium and tolyl rings 1.355 (5)°, and that between the phenyl and tolyl rings 82.693 (7)°.

In the crystal structure, a series of intermolecular C—H···O interactions link the molecules (Table 1), Fig. 2, which are packed by π-π stacking interactions between the pyridinium ring and the tolyl ring at (1 + x, y, z) [centroid-to -centroid separation 3.868 Å], together with two weak C—H···π interactions [H19···Cg2(x - 1, y, z) 2.90 Å, H20B···Cg3(-x, y, z) 2.69 Å; Cg2 and Cg3 are the centroids of the phenyl and tolyl rings,respectively], Fig.3.

Experimental

The tosylamino-containing pyridine derivative was prepared by a similar method to that of Zhang et al. (2007). Colourless needles of (I) were obtained by natural evaporation from its aqueous nitric acid solution.

Refinement

The N-bound H atom was located in a difference map and refined with the distance restraint N—H = 0.91 (4) Å. The other H atoms were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.95 and 0.99Å for aromatic and CH2 H atoms with Uiso(H) = 1.2 Ueq(C), 0.98 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Figures

Fig. 1.
The structure of (I) showing displacement ellipsoids drawn at the 30% probability level and H atoms shown as spheres of arbitrary radius.
Fig. 2.
Crystal packing of (I). Hydrogen bonds are indicated as dashed lines.
Fig. 3.
Crystal packing of (I) viaπ-π and C—H···π interactions, indicated as dashed lines.

Crystal data

C20H21N2O2S+·NO3Z = 2
Mr = 415.46F(000) = 436
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6852 (15) ÅCell parameters from 2706 reflections
b = 9.811 (2) Åθ = 2.2–27.9°
c = 13.240 (3) ŵ = 0.21 mm1
α = 104.26 (3)°T = 113 K
β = 91.82 (3)°Cut needle, colourless
γ = 95.64 (2)°0.20 × 0.18 × 0.12 mm
V = 961.2 (3) Å3

Data collection

Rigaku Saturn CCD diffractometer3355 independent reflections
Radiation source: fine-focus sealed tube2020 reflections with I > 2σ(I)
graphiteRint = 0.099
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω and [var phi] scansh = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −11→10
Tmin = 0.960, Tmax = 0.976l = −13→15
7087 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 0.94w = 1/[σ2(Fo2) + (0.0858P)2] where P = (Fo2 + 2Fc2)/3
3355 reflections(Δ/σ)max = 0.002
267 parametersΔρmax = 0.76 e Å3
18 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.18143 (12)0.79196 (10)0.86138 (8)0.0205 (3)
O10.1109 (3)0.9220 (3)0.9041 (2)0.0274 (7)
O20.2282 (3)0.7040 (3)0.9273 (2)0.0246 (7)
N10.5863 (4)0.5427 (4)0.8435 (3)0.0227 (8)
N20.3629 (4)0.8340 (3)0.8070 (2)0.0182 (8)
C10.6827 (5)0.4979 (4)0.9147 (3)0.0263 (10)
H10.68610.39950.90780.032*
C20.7735 (5)0.5931 (4)0.9951 (3)0.0256 (10)
H20.84070.56201.04490.031*
C30.7679 (5)0.7362 (4)1.0043 (3)0.0240 (10)
H30.83210.80431.05990.029*
C40.6674 (5)0.7786 (4)0.9313 (3)0.0234 (10)
H40.66200.87640.93680.028*
C50.5758 (5)0.6794 (4)0.8510 (3)0.0178 (9)
C60.4652 (5)0.7138 (4)0.7666 (3)0.0204 (9)
H6A0.54210.73700.71320.024*
H6B0.38360.62940.73220.024*
C70.3525 (5)0.9325 (4)0.7392 (3)0.0225 (10)
H7A0.27621.00600.76950.027*
H7B0.30070.88020.66930.027*
C80.5338 (5)1.0014 (4)0.7292 (3)0.0190 (9)
C90.6059 (5)0.9836 (4)0.6327 (3)0.0246 (10)
H90.53950.93030.57150.030*
C100.7760 (5)1.0438 (4)0.6253 (4)0.0285 (11)
H100.82491.03240.55910.034*
C110.8726 (5)1.1195 (4)0.7142 (4)0.0277 (11)
H110.98911.15890.70940.033*
C120.8006 (5)1.1386 (4)0.8104 (4)0.0254 (10)
H120.86751.19130.87160.030*
C130.6312 (5)1.0808 (4)0.8175 (3)0.0232 (10)
H130.58131.09570.88360.028*
C140.0365 (5)0.6861 (4)0.7588 (3)0.0182 (9)
C150.0291 (5)0.5396 (4)0.7362 (3)0.0219 (10)
H150.09530.49580.77860.026*
C16−0.0733 (5)0.4593 (4)0.6532 (3)0.0250 (10)
H16−0.08010.35910.63900.030*
C17−0.1692 (5)0.5217 (4)0.5878 (3)0.0224 (10)
C18−0.1592 (5)0.6684 (4)0.6119 (3)0.0222 (10)
H18−0.22390.71250.56890.027*
C19−0.0576 (5)0.7516 (4)0.6967 (3)0.0224 (10)
H19−0.05220.85180.71220.027*
C20−0.2769 (5)0.4302 (4)0.4942 (3)0.0288 (10)
H20A−0.36910.37050.51740.043*
H20B−0.20140.37030.44880.043*
H20C−0.33020.49040.45570.043*
H1A0.525 (5)0.470 (4)0.796 (3)0.014 (10)*
O30.4546 (4)0.3632 (3)0.6655 (2)0.0349 (8)
O40.2927 (4)0.2835 (3)0.7733 (2)0.0319 (8)
N30.3338 (4)0.2729 (3)0.6806 (3)0.0258 (8)
O50.2626 (4)0.1803 (3)0.6083 (2)0.0346 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0123 (5)0.0245 (6)0.0255 (6)0.0017 (4)0.0065 (4)0.0070 (4)
O10.0220 (16)0.0240 (15)0.0345 (19)0.0057 (12)0.0082 (14)0.0020 (13)
O20.0183 (15)0.0334 (17)0.0247 (18)−0.0012 (12)0.0055 (13)0.0132 (13)
N10.0161 (19)0.022 (2)0.030 (2)0.0022 (15)0.0065 (16)0.0068 (17)
N20.0156 (11)0.0195 (11)0.0202 (11)0.0022 (8)0.0038 (8)0.0057 (8)
C10.026 (2)0.025 (2)0.034 (3)0.0112 (19)0.008 (2)0.015 (2)
C20.018 (2)0.036 (3)0.029 (3)0.0085 (19)0.005 (2)0.018 (2)
C30.013 (2)0.034 (3)0.026 (3)0.0035 (18)0.0050 (18)0.011 (2)
C40.019 (2)0.022 (2)0.031 (3)0.0034 (17)0.009 (2)0.0079 (19)
C50.0084 (18)0.019 (2)0.030 (2)0.0035 (15)0.0100 (17)0.0117 (17)
C60.013 (2)0.022 (2)0.028 (3)0.0050 (16)0.0076 (18)0.0076 (18)
C70.012 (2)0.024 (2)0.034 (3)0.0021 (17)0.0049 (19)0.0121 (19)
C80.012 (2)0.020 (2)0.030 (3)0.0036 (16)0.0044 (18)0.0120 (18)
C90.021 (2)0.023 (2)0.033 (3)0.0046 (18)0.004 (2)0.0118 (19)
C100.025 (2)0.028 (2)0.040 (3)0.0091 (19)0.016 (2)0.020 (2)
C110.013 (2)0.024 (2)0.052 (3)0.0042 (18)0.010 (2)0.019 (2)
C120.010 (2)0.020 (2)0.046 (3)−0.0011 (16)0.003 (2)0.010 (2)
C130.018 (2)0.025 (2)0.029 (3)0.0073 (18)0.009 (2)0.0077 (19)
C140.0093 (18)0.024 (2)0.023 (2)0.0040 (15)0.0103 (16)0.0066 (17)
C150.015 (2)0.026 (2)0.028 (3)0.0012 (17)0.0058 (19)0.0132 (19)
C160.024 (2)0.020 (2)0.033 (3)−0.0006 (18)0.009 (2)0.0090 (19)
C170.010 (2)0.033 (2)0.026 (3)0.0011 (17)0.0111 (18)0.0100 (19)
C180.010 (2)0.033 (2)0.028 (3)0.0080 (17)0.0102 (18)0.0120 (19)
C190.015 (2)0.023 (2)0.032 (3)0.0068 (17)0.0122 (19)0.0081 (19)
C200.019 (2)0.034 (2)0.031 (3)−0.0003 (18)0.007 (2)0.005 (2)
O30.0331 (18)0.0320 (17)0.039 (2)−0.0090 (14)0.0143 (15)0.0111 (14)
O40.0257 (17)0.0449 (19)0.0253 (19)0.0004 (13)0.0091 (14)0.0092 (14)
N30.021 (2)0.027 (2)0.033 (2)0.0045 (16)0.0084 (17)0.0113 (18)
O50.0264 (17)0.0375 (18)0.032 (2)−0.0073 (14)0.0016 (15)−0.0019 (15)

Geometric parameters (Å, °)

S1—O11.429 (3)C9—H90.9500
S1—O21.431 (3)C10—C111.376 (6)
S1—N21.652 (3)C10—H100.9500
S1—C141.773 (4)C11—C121.383 (6)
N1—C51.331 (5)C11—H110.9500
N1—C11.362 (5)C12—C131.384 (5)
N1—H1A0.91 (4)C12—H120.9500
N2—C71.478 (5)C13—H130.9500
N2—C61.481 (4)C14—C151.388 (5)
C1—C21.351 (6)C14—C191.389 (5)
C1—H10.9500C15—C161.358 (6)
C2—C31.384 (5)C15—H150.9500
C2—H20.9500C16—C171.406 (5)
C3—C41.385 (5)C16—H160.9500
C3—H30.9500C17—C181.389 (5)
C4—C51.371 (6)C17—C201.505 (6)
C4—H40.9500C18—C191.380 (6)
C5—C61.507 (5)C18—H180.9500
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—H20A0.9800
C7—C81.512 (5)C20—H20B0.9800
C7—H7A0.9900C20—H20C0.9800
C7—H7B0.9900O3—N31.275 (4)
C8—C131.384 (5)O4—N31.258 (4)
C8—C91.388 (6)N3—O51.217 (4)
C9—C101.398 (5)
O1—S1—O2120.51 (18)C8—C9—C10120.1 (4)
O1—S1—N2106.19 (16)C8—C9—H9119.9
O2—S1—N2106.00 (16)C10—C9—H9119.9
O1—S1—C14109.31 (17)C11—C10—C9119.8 (4)
O2—S1—C14107.56 (17)C11—C10—H10120.1
N2—S1—C14106.42 (17)C9—C10—H10120.1
C5—N1—C1121.9 (4)C10—C11—C12120.2 (4)
C5—N1—H1A125 (2)C10—C11—H11119.9
C1—N1—H1A113 (2)C12—C11—H11119.9
C7—N2—C6114.8 (3)C11—C12—C13120.0 (4)
C7—N2—S1116.9 (2)C11—C12—H12120.0
C6—N2—S1114.4 (2)C13—C12—H12120.0
C2—C1—N1120.2 (4)C8—C13—C12120.5 (4)
C2—C1—H1119.9C8—C13—H13119.7
N1—C1—H1119.9C12—C13—H13119.7
C1—C2—C3119.5 (4)C15—C14—C19120.8 (4)
C1—C2—H2120.3C15—C14—S1120.0 (3)
C3—C2—H2120.3C19—C14—S1119.1 (3)
C2—C3—C4119.1 (4)C16—C15—C14119.7 (4)
C2—C3—H3120.5C16—C15—H15120.1
C4—C3—H3120.5C14—C15—H15120.1
C5—C4—C3120.0 (4)C15—C16—C17121.2 (4)
C5—C4—H4120.0C15—C16—H16119.4
C3—C4—H4120.0C17—C16—H16119.4
N1—C5—C4119.3 (4)C18—C17—C16118.0 (4)
N1—C5—C6116.2 (4)C18—C17—C20121.9 (3)
C4—C5—C6124.4 (3)C16—C17—C20120.1 (3)
N2—C6—C5112.7 (3)C19—C18—C17121.5 (4)
N2—C6—H6A109.1C19—C18—H18119.2
C5—C6—H6A109.1C17—C18—H18119.2
N2—C6—H6B109.1C18—C19—C14118.8 (4)
C5—C6—H6B109.1C18—C19—H19120.6
H6A—C6—H6B107.8C14—C19—H19120.6
N2—C7—C8109.7 (3)C17—C20—H20A109.5
N2—C7—H7A109.7C17—C20—H20B109.5
C8—C7—H7A109.7H20A—C20—H20B109.5
N2—C7—H7B109.7C17—C20—H20C109.5
C8—C7—H7B109.7H20A—C20—H20C109.5
H7A—C7—H7B108.2H20B—C20—H20C109.5
C13—C8—C9119.3 (4)O5—N3—O4121.9 (4)
C13—C8—C7119.8 (4)O5—N3—O3121.1 (4)
C9—C8—C7120.8 (4)O4—N3—O3117.0 (4)
O1—S1—N2—C7−47.2 (3)C7—C8—C9—C10−177.7 (3)
O2—S1—N2—C7−176.5 (3)C8—C9—C10—C110.7 (5)
C14—S1—N2—C769.2 (3)C9—C10—C11—C12−1.3 (5)
O1—S1—N2—C6174.5 (3)C10—C11—C12—C130.3 (6)
O2—S1—N2—C645.2 (3)C9—C8—C13—C12−1.8 (5)
C14—S1—N2—C6−69.1 (3)C7—C8—C13—C12176.7 (3)
C5—N1—C1—C2−1.0 (6)C11—C12—C13—C81.3 (5)
N1—C1—C2—C3−0.1 (6)O1—S1—C14—C15−151.3 (3)
C1—C2—C3—C40.7 (6)O2—S1—C14—C15−18.9 (4)
C2—C3—C4—C5−0.2 (6)N2—S1—C14—C1594.4 (3)
C1—N1—C5—C41.5 (6)O1—S1—C14—C1934.0 (4)
C1—N1—C5—C6179.7 (3)O2—S1—C14—C19166.4 (3)
C3—C4—C5—N1−0.8 (6)N2—S1—C14—C19−80.3 (3)
C3—C4—C5—C6−178.9 (4)C19—C14—C15—C16−0.9 (6)
C7—N2—C6—C5140.3 (3)S1—C14—C15—C16−175.5 (3)
S1—N2—C6—C5−80.4 (3)C14—C15—C16—C171.5 (6)
N1—C5—C6—N2141.3 (3)C15—C16—C17—C18−1.3 (6)
C4—C5—C6—N2−40.5 (5)C15—C16—C17—C20178.0 (4)
C6—N2—C7—C8−62.9 (4)C16—C17—C18—C190.5 (6)
S1—N2—C7—C8158.9 (3)C20—C17—C18—C19−178.7 (4)
N2—C7—C8—C13−59.5 (4)C17—C18—C19—C140.1 (6)
N2—C7—C8—C9119.0 (4)C15—C14—C19—C180.1 (6)
C13—C8—C9—C100.8 (5)S1—C14—C19—C18174.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.91 (4)1.82 (4)2.670 (5)156 (3)
N1—H1A···O40.91 (4)2.39 (4)3.161 (5)144 (3)
C6—H6B···O30.992.663.362 (5)128
C15—H15···O40.952.683.493 (5)144
C1—H1···O2i0.952.713.315 (5)122
C3—H3···O1ii0.952.603.301 (5)131
C20—H20A···O3iii0.982.433.256 (5)142
C7—H7A···O4iv0.992.703.440 (5)132
C11—H11···O4v0.952.543.439 (5)158
C11—H11···O5v0.952.553.411 (5)151
C20—H20C···O3vi0.982.623.594 (5)174
C10—H10···O5vii0.952.663.309 (6)126

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) x−1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) −x, −y+1, −z+1; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5137).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, Y.-Y., Li, J.-S., Zhou, X.-L. & Fan, X.-P. (2007). Acta Cryst. E63, o1285–o1286.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography