PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1332–m1333.
Published online 2009 October 10. doi:  10.1107/S1600536809040495
PMCID: PMC2971035

Diiodido{4-nitro-2-[2-(piperidin-1-yl)ethyl­imino­meth­yl]phenolato}zinc(II)

Abstract

In the title complex, [ZnI2(C14H19N3O3)], the ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand, and by two iodide ions in a distorted tetra­hedral coordination. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming dimers.

Related literature

For background to the chemistry of Schiff base complexes, see: Ali et al. (2008 [triangle]); Biswas et al. (2008 [triangle]); Chen et al. (2008 [triangle]); Darensbourg & Frantz (2007 [triangle]); Habibi et al. (2007 [triangle]); Kawamoto et al. (2008 [triangle]); Lipscomb & Sträter (1996 [triangle]); Tomat et al. (2007 [triangle]); Wu et al. (2008 [triangle]); Yuan et al. (2007 [triangle]). For related structures see: Zhu (2008 [triangle]); Zhu & Yang (2008a [triangle],b [triangle],c [triangle]); Qiu (2006a [triangle],b [triangle]); Wei et al. (2007 [triangle]); Zhu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1332-scheme1.jpg

Experimental

Crystal data

  • [ZnI2(C14H19N3O3)]
  • M r = 596.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1332-efi1.jpg
  • a = 8.7467 (2) Å
  • b = 10.7114 (3) Å
  • c = 10.9541 (2) Å
  • α = 89.553 (2)°
  • β = 89.334 (2)°
  • γ = 68.984 (2)°
  • V = 957.94 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.52 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.465, T max = 0.497
  • 5795 measured reflections
  • 4034 independent reflections
  • 2994 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.080
  • S = 1.01
  • 4034 reflections
  • 211 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040495/om2281sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040495/om2281Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases are interesting ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their complexes have been investigated in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems and functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). Recently, we have reported a few Schiff base zinc complexes (Zhu, 2008; Zhu & Yang, 2008a,b,c). In this paper, the title new zinc(II) complex, Fig. 1, is reported.

In the title complex, the ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand, and by two iodide ions in a tetrahedral coordination. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in the Schiff base zinc complexes we reported previously and other similar Schiff base zinc complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006a,b).

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds, forming dimers (Table 2, Fig. 2).

Experimental

The Schiff base compound was prepared by the condensation of equimolar amounts of 5-nitrosalicylaldehyde with 2-piperidin-1-ylethylamine in a methanol solution. The complex was prepared by the following method. To an anhydrous methanol solution (5 ml) of ZnI2 (31.9 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (27.7 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, colorless block-shaped crystals were formed.

Refinement

H2 was located from a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex, with ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title complex, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

[ZnI2(C14H19N3O3)]Z = 2
Mr = 596.49F(000) = 568
Triclinic, P1Dx = 2.068 Mg m3
a = 8.7467 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7114 (3) ÅCell parameters from 1800 reflections
c = 10.9541 (2) Åθ = 2.6–25.5°
α = 89.553 (2)°µ = 4.52 mm1
β = 89.334 (2)°T = 298 K
γ = 68.984 (2)°Block, colorless
V = 957.94 (4) Å30.20 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer4034 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −11→10
Tmin = 0.465, Tmax = 0.497k = −11→13
5795 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0311P)2 + 0.4408P] where P = (Fo2 + 2Fc2)/3
4034 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = −0.62 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.38637 (6)0.75022 (5)0.70365 (5)0.04264 (14)
I10.26005 (4)1.00680 (3)0.70856 (3)0.06259 (13)
I20.68572 (4)0.65555 (4)0.63039 (4)0.07424 (14)
N10.2296 (4)0.7001 (4)0.5954 (3)0.0390 (8)
N20.2722 (4)0.8331 (3)0.2827 (3)0.0363 (8)
N30.0106 (4)0.3085 (3)0.8808 (3)0.0435 (9)
O10.3662 (4)0.6417 (3)0.8421 (3)0.0533 (8)
O2−0.0766 (4)0.3055 (3)0.7938 (3)0.0579 (9)
O30.0124 (4)0.2483 (3)0.9762 (3)0.0587 (9)
C10.1913 (5)0.5441 (4)0.7469 (3)0.0345 (9)
C20.2852 (5)0.5627 (4)0.8453 (4)0.0355 (9)
C30.2900 (5)0.4870 (4)0.9535 (4)0.0415 (10)
H30.35340.49541.01830.050*
C40.2054 (5)0.4026 (4)0.9657 (4)0.0393 (10)
H40.21040.35491.03770.047*
C50.1107 (5)0.3891 (4)0.8682 (3)0.0344 (9)
C60.1057 (5)0.4572 (4)0.7614 (4)0.0378 (9)
H60.04380.44540.69700.045*
C70.1648 (5)0.6156 (4)0.6312 (4)0.0378 (10)
H70.09340.59850.57740.045*
C80.1724 (5)0.7702 (5)0.4791 (4)0.0482 (11)
H8A0.11460.86470.49390.058*
H8B0.09750.73460.44050.058*
C90.3181 (5)0.7512 (5)0.3965 (4)0.0459 (11)
H9A0.39890.77580.44010.055*
H9B0.36760.65750.37480.055*
C100.2279 (6)0.9798 (4)0.3042 (4)0.0508 (12)
H10A0.32080.99590.33850.061*
H10B0.13801.01030.36260.061*
C110.1785 (6)1.0575 (5)0.1866 (4)0.0569 (13)
H11A0.15271.15190.20220.068*
H11B0.08091.04620.15530.068*
C120.3150 (6)1.0100 (5)0.0919 (4)0.0537 (12)
H12A0.27931.05820.01590.064*
H12B0.41001.02770.12000.064*
C130.3597 (7)0.8626 (5)0.0713 (4)0.0609 (14)
H13A0.45040.83170.01370.073*
H13B0.26720.84640.03620.073*
C140.4070 (6)0.7853 (5)0.1887 (4)0.0609 (14)
H14A0.43140.69110.17300.073*
H14B0.50520.79540.22010.073*
H20.183 (4)0.825 (5)0.250 (4)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0420 (3)0.0466 (3)0.0436 (3)−0.0209 (2)−0.0078 (2)0.0040 (2)
I10.0622 (2)0.0466 (2)0.0738 (3)−0.01273 (16)−0.01062 (18)−0.00726 (17)
I20.03816 (19)0.0782 (3)0.0974 (3)−0.00982 (18)−0.00365 (18)−0.0088 (2)
N10.0397 (19)0.047 (2)0.0332 (19)−0.0191 (17)−0.0049 (16)0.0070 (16)
N20.040 (2)0.039 (2)0.0326 (19)−0.0174 (16)−0.0002 (15)0.0030 (15)
N30.042 (2)0.037 (2)0.048 (2)−0.0101 (17)−0.0009 (18)0.0072 (17)
O10.065 (2)0.070 (2)0.0409 (17)−0.0426 (19)−0.0175 (15)0.0099 (16)
O20.068 (2)0.062 (2)0.060 (2)−0.0424 (19)−0.0181 (18)0.0107 (17)
O30.063 (2)0.055 (2)0.059 (2)−0.0233 (17)−0.0031 (17)0.0232 (17)
C10.033 (2)0.042 (2)0.026 (2)−0.0120 (18)−0.0035 (17)0.0023 (17)
C20.033 (2)0.040 (2)0.034 (2)−0.0144 (19)−0.0044 (17)0.0017 (18)
C30.039 (2)0.051 (3)0.032 (2)−0.013 (2)−0.0081 (18)0.0002 (19)
C40.038 (2)0.040 (2)0.032 (2)−0.0050 (19)0.0018 (18)0.0087 (18)
C50.037 (2)0.032 (2)0.033 (2)−0.0111 (18)−0.0016 (18)0.0033 (17)
C60.039 (2)0.040 (2)0.035 (2)−0.0142 (19)−0.0066 (18)0.0030 (18)
C70.038 (2)0.048 (3)0.029 (2)−0.017 (2)−0.0046 (18)0.0038 (19)
C80.048 (3)0.064 (3)0.036 (2)−0.025 (2)−0.006 (2)0.012 (2)
C90.046 (3)0.047 (3)0.042 (3)−0.013 (2)0.000 (2)0.012 (2)
C100.068 (3)0.041 (3)0.043 (3)−0.020 (2)0.006 (2)0.003 (2)
C110.063 (3)0.043 (3)0.056 (3)−0.008 (2)0.011 (3)0.012 (2)
C120.053 (3)0.062 (3)0.048 (3)−0.024 (3)0.003 (2)0.014 (2)
C130.071 (3)0.066 (4)0.044 (3)−0.022 (3)0.014 (3)0.005 (2)
C140.067 (3)0.049 (3)0.055 (3)−0.007 (3)0.025 (3)0.004 (2)

Geometric parameters (Å, °)

Zn1—O11.948 (3)C5—C61.367 (5)
Zn1—N12.037 (3)C6—H60.9300
Zn1—I22.5666 (6)C7—H70.9300
Zn1—I12.5690 (6)C8—C91.508 (6)
N1—C71.284 (5)C8—H8A0.9700
N1—C81.473 (5)C8—H8B0.9700
N2—C91.492 (5)C9—H9A0.9700
N2—C101.496 (5)C9—H9B0.9700
N2—C141.503 (5)C10—C111.509 (6)
N2—H20.89 (4)C10—H10A0.9700
N3—O31.220 (4)C10—H10B0.9700
N3—O21.235 (5)C11—C121.518 (6)
N3—C51.439 (5)C11—H11A0.9700
O1—C21.285 (5)C11—H11B0.9700
C1—C61.396 (6)C12—C131.502 (7)
C1—C21.420 (5)C12—H12A0.9700
C1—C71.452 (5)C12—H12B0.9700
C2—C31.423 (5)C13—C141.503 (7)
C3—C41.363 (6)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.398 (6)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
O1—Zn1—N194.96 (13)N1—C8—H8A109.9
O1—Zn1—I2107.27 (10)C9—C8—H8A109.9
N1—Zn1—I2113.81 (10)N1—C8—H8B109.9
O1—Zn1—I1121.56 (10)C9—C8—H8B109.9
N1—Zn1—I1102.97 (10)H8A—C8—H8B108.3
I2—Zn1—I1114.61 (2)N2—C9—C8112.2 (3)
C7—N1—C8117.3 (4)N2—C9—H9A109.2
C7—N1—Zn1121.3 (3)C8—C9—H9A109.2
C8—N1—Zn1121.0 (3)N2—C9—H9B109.2
C9—N2—C10113.3 (3)C8—C9—H9B109.2
C9—N2—C14110.7 (3)H9A—C9—H9B107.9
C10—N2—C14110.1 (3)N2—C10—C11110.8 (4)
C9—N2—H2111 (3)N2—C10—H10A109.5
C10—N2—H2105 (3)C11—C10—H10A109.5
C14—N2—H2107 (3)N2—C10—H10B109.5
O3—N3—O2122.8 (4)C11—C10—H10B109.5
O3—N3—C5119.6 (4)H10A—C10—H10B108.1
O2—N3—C5117.6 (3)C10—C11—C12110.9 (4)
C2—O1—Zn1126.5 (3)C10—C11—H11A109.5
C6—C1—C2119.3 (4)C12—C11—H11A109.5
C6—C1—C7114.7 (4)C10—C11—H11B109.5
C2—C1—C7125.8 (4)C12—C11—H11B109.5
O1—C2—C1124.3 (4)H11A—C11—H11B108.0
O1—C2—C3118.5 (4)C13—C12—C11109.5 (4)
C1—C2—C3117.2 (4)C13—C12—H12A109.8
C4—C3—C2122.4 (4)C11—C12—H12A109.8
C4—C3—H3118.8C13—C12—H12B109.8
C2—C3—H3118.8C11—C12—H12B109.8
C3—C4—C5119.0 (4)H12A—C12—H12B108.2
C3—C4—H4120.5C12—C13—C14111.2 (4)
C5—C4—H4120.5C12—C13—H13A109.4
C6—C5—C4120.6 (4)C14—C13—H13A109.4
C6—C5—N3118.8 (4)C12—C13—H13B109.4
C4—C5—N3120.5 (4)C14—C13—H13B109.4
C5—C6—C1121.4 (4)H13A—C13—H13B108.0
C5—C6—H6119.3N2—C14—C13111.4 (4)
C1—C6—H6119.3N2—C14—H14A109.3
N1—C7—C1126.9 (4)C13—C14—H14A109.3
N1—C7—H7116.5N2—C14—H14B109.3
C1—C7—H7116.5C13—C14—H14B109.3
N1—C8—C9109.1 (4)H14A—C14—H14B108.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (4)2.00 (3)2.777 (5)144 (5)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2281).

References

  • Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. [PMC free article] [PubMed]
  • Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem.47, 4513–4519. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem.46, 5967–5978. [PubMed]
  • Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.
  • Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem.47, 3095–3104. [PubMed]
  • Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev.96, 2375–2434. [PubMed]
  • Qiu, X.-Y. (2006a). Acta Cryst. E62, m717–m718.
  • Qiu, X.-Y. (2006b). Acta Cryst. E62, m2173–m2174.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem.46, 6224–6226. [PubMed]
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.
  • Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem.47, 3452–3459. [PubMed]
  • Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem.46, 11235–11242. [PubMed]
  • Zhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457. [PMC free article] [PubMed]
  • Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.
  • Zhu, X.-W. & Yang, X.-Z. (2008a). Acta Cryst. E64, m1090–m1091. [PMC free article] [PubMed]
  • Zhu, X.-W. & Yang, X.-Z. (2008b). Acta Cryst. E64, m1092–m1093. [PMC free article] [PubMed]
  • Zhu, X.-W. & Yang, X.-Z. (2008c). Acta Cryst. E64, m1094–m1095. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography