PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2926.
Published online 2009 October 31. doi:  10.1107/S1600536809044523
PMCID: PMC2971034

4-Bromo-N-(diisopropoxyphosphor­yl)benzamide

Abstract

In the title compound, C13H19BrNO4P, the crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds between the phosphoryl O atom and the amide N atom which link the mol­ecules into centrosymmetric dimers. These dimers are further packed into stacks along the c axis by inter­molecular C—H(...)O and C—H(...)π inter­actions.

Related literature

For the synthesis, see: Safin, Sokolov, Baranov et al. (2008 [triangle]). For related structures, see: Chekhlov (1990 [triangle]); Safin et al. (2009 [triangle]); Safin, Sokolov, Nöth et al. (2008 [triangle]); Solov’ev et al. (1990 [triangle]). For the chemistry of phosphine derivatives of urea and thio­urea, see: Birdsall et al. (1999 [triangle]). For the use of bidentate organophospho­rus ligand systems, see: Crespo et al. (2004 [triangle]); Safin et al. (2006 [triangle]) and for the transport and extraction of metal ions, see: Luckay et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2926-scheme1.jpg

Experimental

Crystal data

  • C13H19BrNO4P
  • M r = 364.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2926-efi4.jpg
  • a = 8.611 (1) Å
  • b = 19.786 (3) Å
  • c = 9.849 (1) Å
  • β = 95.357 (2)°
  • V = 1670.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.57 mm−1
  • T = 100 K
  • 0.32 × 0.07 × 0.05 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.494, T max = 0.893
  • 9035 measured reflections
  • 3405 independent reflections
  • 2604 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.120
  • S = 1.05
  • 3405 reflections
  • 185 parameters
  • H-atom parameters constrained
  • Δρmax = 1.29 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]; Atwood & Barbour, 2003 [triangle]); software used to prepare material for publication: X-SEED.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044523/lx2117sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044523/lx2117Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank the National Research Foundation (NRF) of South Africa for financial support.

supplementary crystallographic information

Comment

The chemistry of phosphine derivatives of urea and thiourea was first studied during the 1960 s (Birdsall et al., 1999). Subsequently, related bidentate organophosphorus ligand systems were developed to form R1C(X)NHPR2 and their derivatives (Safin et al., 2006). Different R1C(X)NHP(Y)R2R3 (R1 = RNH or NZ2 with Z = H, alkyl or aryl; R2, R3 = alkyl, aryl, alkoxy or aryloxy; X, Y = O, S, Se) have been reported (Crespo et al., 2004). These types of ligands have recently been used successfully as ionophores for the transport and extraction of a number of metal ions (Luckay et al., 2009a, 2009b). Here we report the crystal structure of the title compound (I) (Fig. 1).

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds between the phosphoryl O atom and the amide N atom which link the molecules into centrosymmetric dimers (Table 1 and Fig. 2). These dimers are further packed into stacks along the c axis by intermolecular C—H···O and C—H···π interactions; the first between the benzene H atom and the oxygen of the C═O unit, with a C3—H3···O4ii, the second between the benzene H atom and the oxygen of the P═O unit, with a C6—H6···O1i, the third between the methyl H atom of the isopropyl group and the benzene ring, with a C16—H16C···Cgiii (Cg is the centroid of the C1–C6 benzene ring), respectively (Table 1 and Fig. 2).

Experimental

4-bromo-N-(diisopropoxyphosphoryl)benzthioamide was prepared according to the procedure of Safin et al. (2009). This ligand and one equivalent of copper(I) iodide was dissolved in acetone and heated to 50 °C for 2 hours. The colourless powder obtained was dissolved in a minimal quantity of THF and allowed to slowly evaporate. After 6 days, colourless needles were deposited. The hydrolysis of the thione group group was most likely caused by the presence of moisture in the solvents as well as the presence of the Cu+ ion.

Refinement

All H atoms were positioned geometrically (C—H = 0.95, 1.00 and 0.98 Å for aromatic CH, alkyl CH and CH3 groups, respectively; N—H = 0.88 Å) and constrained to ride on their parent atoms. Uiso(H) values were set at 1.2 times Ueq(C,N) except for methyl groups where Uiso(H) was set at 1.5 times Ueq(C).

The largest residual electron density peak of 1.29 e Å-3 is located 0.93 Å next to Br1.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
Fig. 2.
N—H···O, C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. Symmetry codes: ...

Crystal data

C13H19BrNO4PF(000) = 744
Mr = 364.17Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2372 reflections
a = 8.611 (1) Åθ = 2.3–26.3°
b = 19.786 (3) ŵ = 2.57 mm1
c = 9.849 (1) ÅT = 100 K
β = 95.357 (2)°Needle, colourless
V = 1670.7 (4) Å30.32 × 0.07 × 0.05 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer3405 independent reflections
Radiation source: fine-focus sealed tube2604 reflections with I > 2σ(I)
graphiteRint = 0.038
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→9
Tmin = 0.494, Tmax = 0.893k = −24→24
9035 measured reflectionsl = −8→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.120H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0687P)2] where P = (Fo2 + 2Fc2)/3
3405 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.02989 (4)0.39671 (2)−0.17708 (4)0.03600 (16)
P10.63994 (9)0.40142 (4)0.52752 (8)0.01485 (19)
O10.6535 (2)0.46798 (10)0.5943 (2)0.0195 (5)
O20.7917 (2)0.37315 (10)0.4748 (2)0.0174 (5)
O30.5980 (2)0.34095 (10)0.6189 (2)0.0190 (5)
O40.5279 (3)0.29938 (10)0.3200 (2)0.0260 (5)
N10.5031 (3)0.40726 (12)0.3964 (2)0.0161 (5)
H10.45240.44570.38360.019*
C10.3453 (3)0.36868 (15)0.1896 (3)0.0160 (6)
C20.2722 (4)0.31254 (15)0.1264 (3)0.0201 (7)
H20.29940.26840.15830.024*
C30.1603 (3)0.32078 (16)0.0175 (3)0.0217 (7)
H30.10950.2827−0.02540.026*
C40.1240 (4)0.38516 (17)−0.0273 (3)0.0233 (7)
C50.1961 (4)0.44202 (16)0.0329 (3)0.0228 (7)
H50.17020.4860−0.00070.027*
C60.3062 (3)0.43314 (15)0.1425 (3)0.0177 (6)
H60.35560.47140.18600.021*
C100.4653 (3)0.35442 (15)0.3062 (3)0.0166 (6)
C110.8492 (5)0.4199 (2)0.2571 (4)0.0480 (11)
H11C0.83810.37380.22100.072*
H11B0.92840.44400.21070.072*
H11A0.74910.44350.24140.072*
C120.8981 (4)0.41721 (17)0.4076 (4)0.0287 (8)
H120.89520.46380.44690.034*
C131.0587 (4)0.3875 (2)0.4397 (4)0.0439 (11)
H13A1.08280.38480.53880.066*
H13B1.13590.41620.40070.066*
H13C1.06180.34200.40050.066*
C140.3657 (4)0.28522 (19)0.6749 (4)0.0366 (9)
H14A0.33240.28230.57720.055*
H14B0.27370.28840.72620.055*
H14C0.42560.24470.70360.055*
C150.4659 (4)0.34681 (17)0.7022 (3)0.0246 (7)
H150.40380.38790.67320.030*
C160.5304 (5)0.3551 (2)0.8481 (3)0.0445 (11)
H16A0.58540.31370.87920.067*
H16C0.44490.36370.90480.067*
H16B0.60330.39320.85560.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0283 (2)0.0495 (3)0.0267 (2)0.00590 (16)−0.01544 (16)−0.00825 (16)
P10.0128 (4)0.0175 (4)0.0137 (4)0.0027 (3)−0.0017 (3)−0.0004 (3)
O10.0173 (11)0.0195 (11)0.0204 (11)0.0039 (9)−0.0046 (9)−0.0037 (9)
O20.0118 (10)0.0202 (11)0.0200 (11)0.0009 (8)0.0004 (8)0.0004 (9)
O30.0174 (11)0.0204 (11)0.0197 (11)0.0047 (9)0.0043 (9)0.0039 (9)
O40.0309 (13)0.0168 (12)0.0285 (13)0.0061 (10)−0.0071 (10)0.0023 (9)
N10.0173 (13)0.0148 (13)0.0153 (13)0.0027 (10)−0.0040 (10)−0.0011 (9)
C10.0156 (15)0.0201 (16)0.0125 (14)−0.0008 (12)0.0025 (12)−0.0010 (12)
C20.0213 (16)0.0184 (16)0.0209 (16)−0.0074 (12)0.0024 (13)0.0005 (12)
C30.0171 (16)0.0243 (17)0.0238 (17)−0.0073 (13)0.0028 (13)−0.0050 (13)
C40.0150 (16)0.040 (2)0.0140 (16)0.0005 (13)−0.0025 (12)−0.0076 (13)
C50.0240 (17)0.0236 (17)0.0196 (16)0.0043 (13)−0.0035 (13)−0.0005 (13)
C60.0188 (16)0.0163 (15)0.0172 (15)−0.0003 (12)−0.0023 (12)−0.0023 (12)
C100.0192 (15)0.0174 (16)0.0133 (15)−0.0025 (12)0.0026 (12)−0.0016 (11)
C110.039 (2)0.062 (3)0.045 (3)0.012 (2)0.0156 (19)0.027 (2)
C120.0242 (18)0.0203 (17)0.044 (2)−0.0065 (14)0.0148 (16)−0.0082 (15)
C130.0169 (19)0.077 (3)0.039 (2)−0.0014 (18)0.0074 (17)−0.010 (2)
C140.0266 (19)0.040 (2)0.045 (2)−0.0015 (16)0.0130 (16)0.0000 (17)
C150.0194 (17)0.0299 (18)0.0257 (17)0.0053 (14)0.0082 (13)0.0019 (14)
C160.036 (2)0.077 (3)0.0219 (19)−0.011 (2)0.0110 (16)−0.0021 (19)

Geometric parameters (Å, °)

Br1—C41.902 (3)C6—H60.9500
P1—O11.472 (2)C11—C121.504 (5)
P1—O21.555 (2)C11—H11C0.9800
P1—O31.560 (2)C11—H11B0.9800
P1—N11.669 (2)C11—H11A0.9800
O2—C121.466 (4)C12—C131.509 (5)
O3—C151.468 (4)C12—H121.0000
O4—C101.217 (4)C13—H13A0.9800
N1—C101.390 (4)C13—H13B0.9800
N1—H10.8800C13—H13C0.9800
C1—C61.388 (4)C14—C151.503 (5)
C1—C21.394 (4)C14—H14A0.9800
C1—C101.498 (4)C14—H14B0.9800
C2—C31.383 (4)C14—H14C0.9800
C2—H20.9500C15—C161.500 (4)
C3—C41.374 (4)C15—H151.0000
C3—H30.9500C16—H16A0.9800
C4—C51.391 (4)C16—H16C0.9800
C5—C61.380 (4)C16—H16B0.9800
C5—H50.9500
O1—P1—O2115.92 (12)H11C—C11—H11B109.5
O1—P1—O3116.21 (12)C12—C11—H11A109.5
O2—P1—O399.42 (11)H11C—C11—H11A109.5
O1—P1—N1107.74 (12)H11B—C11—H11A109.5
O2—P1—N1108.74 (12)O2—C12—C11109.7 (3)
O3—P1—N1108.36 (12)O2—C12—C13105.8 (3)
C12—O2—P1121.12 (19)C11—C12—C13112.8 (3)
C15—O3—P1119.68 (18)O2—C12—H12109.5
C10—N1—P1123.3 (2)C11—C12—H12109.5
C10—N1—H1118.4C13—C12—H12109.5
P1—N1—H1118.4C12—C13—H13A109.5
C6—C1—C2119.8 (3)C12—C13—H13B109.5
C6—C1—C10123.9 (3)H13A—C13—H13B109.5
C2—C1—C10116.3 (3)C12—C13—H13C109.5
C3—C2—C1120.3 (3)H13A—C13—H13C109.5
C3—C2—H2119.8H13B—C13—H13C109.5
C1—C2—H2119.8C15—C14—H14A109.5
C4—C3—C2118.6 (3)C15—C14—H14B109.5
C4—C3—H3120.7H14A—C14—H14B109.5
C2—C3—H3120.7C15—C14—H14C109.5
C3—C4—C5122.3 (3)H14A—C14—H14C109.5
C3—C4—Br1118.8 (2)H14B—C14—H14C109.5
C5—C4—Br1119.0 (3)O3—C15—C16107.9 (3)
C6—C5—C4118.5 (3)O3—C15—C14107.3 (3)
C6—C5—H5120.7C16—C15—C14114.5 (3)
C4—C5—H5120.7O3—C15—H15109.0
C5—C6—C1120.4 (3)C16—C15—H15109.0
C5—C6—H6119.8C14—C15—H15109.0
C1—C6—H6119.8C15—C16—H16A109.5
O4—C10—N1121.8 (3)C15—C16—H16C109.5
O4—C10—C1121.4 (3)H16A—C16—H16C109.5
N1—C10—C1116.8 (3)C15—C16—H16B109.5
C12—C11—H11C109.5H16A—C16—H16B109.5
C12—C11—H11B109.5H16C—C16—H16B109.5
O1—P1—O2—C12−40.8 (2)Br1—C4—C5—C6179.2 (2)
O3—P1—O2—C12−166.1 (2)C4—C5—C6—C11.0 (5)
N1—P1—O2—C1280.7 (2)C2—C1—C6—C5−0.4 (4)
O1—P1—O3—C1549.5 (2)C10—C1—C6—C5178.9 (3)
O2—P1—O3—C15174.7 (2)P1—N1—C10—O42.0 (4)
N1—P1—O3—C15−71.9 (2)P1—N1—C10—C1−177.1 (2)
O1—P1—N1—C10176.7 (2)C6—C1—C10—O4−158.7 (3)
O2—P1—N1—C1050.3 (3)C2—C1—C10—O420.6 (4)
O3—P1—N1—C10−56.8 (3)C6—C1—C10—N120.4 (4)
C6—C1—C2—C3−0.4 (4)C2—C1—C10—N1−160.3 (3)
C10—C1—C2—C3−179.7 (3)P1—O2—C12—C11−88.3 (3)
C1—C2—C3—C40.5 (5)P1—O2—C12—C13149.8 (2)
C2—C3—C4—C50.1 (5)P1—O3—C15—C16−106.3 (3)
C2—C3—C4—Br1−180.0 (2)P1—O3—C15—C14129.8 (2)
C3—C4—C5—C6−0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.962.819 (3)166
C3—H3···O4ii0.952.293.213 (4)163
C6—H6···O1i0.952.483.241 (3)137
C16—H16C···Cgiii0.982.633.608 (4)173

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2117).

References

  • Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des.3, 3–8.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Birdsall, D. J., Green, J., Ly, T. Q., Novosad, J., Necas, M., Slawin, A. M. Z., Woollins, J. D. & Zak, Z. (1999). Eur. J. Inorg. Chem. pp. 1445–1452.
  • Bruker (2002). SADABS and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chekhlov, A. N. (1990). Zh. Strukt. Khim.31, 186–190.
  • Crespo, O., Brusko, V. V., Gimeno, M. C., Tornil, M. L., Laguna, A. & Zabirov, N. G. (2004). Eur. J. Inorg. Chem. pp. 423–430.
  • Luckay, R. C., Sheng, X., Strasser, C. E., Raubenheimer, H. G., Safin, D. A., Babashkina, M. G. & Klein, A. (2009a). Dalton Trans. pp. 4646–4652. [PubMed]
  • Luckay, R. C., Sheng, X., Strasser, C. E., Raubenheimer, H. G., Safin, D. A., Babashkina, M. G. & Klein, A. (2009b). Dalton Trans. pp. 8227–8236. [PubMed]
  • Safin, D. A., Klein, A., Babashkina, M. G., Nöth, H., Krivolapov, D. B., Litvinov, I. A. & Kozlowski, H. (2009). Polyhedron, 28, 1504–1510.
  • Safin, D. A., Sokolov, F. D., Baranov, S. V., Szyrwiel, Ł., Babashkina, M. G., Shakirova, E. R., Hahn, F. E. & Kozlowski, H. (2008). Z. Anorg. Allg. Chem.634, 835–838.
  • Safin, D. A., Sokolov, F. D., Nöth, H., Babashkina, M. G., Gimadiev, T. R., Galezowska, J. & Kozlowski, H. (2008). Polyhedron, 27, 2022–2028.
  • Safin, D. A., Sokolov, F. D., Zabirov, N. G., Brusko, V. V., Krivolapov, D. B., Litvinov, I. A., Luckay, R. C. & Cherkasov, R. A. (2006). Polyhedron, 25, 3330–3336.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Solov’ev, V. N., Chekhlov, A. N., Zabirov, N. G., Cherkazov, R. A. & Martynov, I. V. (1990). Zh. Strukt. Khim.31, 117–122.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography