PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2633–o2634.
Published online 2009 October 3. doi:  10.1107/S1600536809038896
PMCID: PMC2971032

Bis[(E)-1-methyl-4-styrylpyridinium] 4-chloro­benzene­sulfonate iodide

Abstract

In the title compound, 2C14H14N+·C6H4ClO3S·I, each cation exists in an E configuration with respect to the ethenyl bond. The dihedral angle between the pyridinium and benzene rings is 3.98 (6)° in one of the cations and 9.88 (7)° in the other. The two cations are arranged in an anti­parallel manner with π–π inter­actions between pyridinium and benzene rings [centroid–centroid distance = 3.5805 (8) Å]. The benzene ring of the anion makes dihedral angles of 61.20 (6) and 64.25 (6)° with the pyridinium rings of the two cations. In the crystal, the cations are stacked in an anti­parallel manner along the a axis, while the anions are linked into chains along the same direction. The ions are linked into a three-dimensional network by C—H(...)I and C—H(...)O hydrogen bonds and C—H(...)π inter­actions. The crystal under investigation was an inversion twin, with a ratio of 61.7 (5):38.3 (5) for the two components.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For general background to non-linear optical materials, see: Lin et al. (2002 [triangle]); Prasad et al. (1991 [triangle]). For related structures, see: Chanawanno et al. (2008 [triangle]); Chantrapromma et al. (2007 [triangle]; 2009 [triangle]); Fun et al. (2009a [triangle],b [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2633-scheme1.jpg

Experimental

Crystal data

  • 2C14H14N+·C6H4ClO3S·I
  • M r = 711.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2633-efi1.jpg
  • a = 8.1103 (1) Å
  • b = 20.5054 (3) Å
  • c = 9.5549 (2) Å
  • β = 101.799 (1)°
  • V = 1555.45 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.22 mm−1
  • T = 100 K
  • 0.52 × 0.23 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.569, T max = 0.771
  • 30676 measured reflections
  • 13195 independent reflections
  • 12932 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.049
  • S = 1.05
  • 13195 reflections
  • 382 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 1.12 e Å−3
  • Δρmin = −0.44 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 6221 Friedel pairs
  • Flack parameter: 0.383 (5)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038896/ci2919sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038896/ci2919Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. The authors also thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit.

supplementary crystallographic information

Comment

There is a considerable interest in the synthesis of new materials with large second-order optical nonlinearities. Such materials require molecular first hyperpolarizability and orientation in a noncentrosymmetric arrangement (Lin et al., 2002; Prasad et al. 1991). During the course of our systematic studies of organic NLO materials, we have previously synthesized and reported crystal structures of a number of pyridinium derivatives (Chanawanno et al., 2008; Chantrapromma et al., 2007, 2009; Fun et al., 2009a,b). Herein we report the crystal structure of the title pyridinium derivative which crystallizes in noncentrosymmetric P21 space group and exhibits second-order nonlinear optical properties.

The title molecule consists of two C14H14N+ (A and B) cations, one C6H4ClO3S- anion and one I- ion (Fig. 1); the two cations exist in an E configuration with respect to the C7═C8 ethenyl bond, with a C6–C7–C8–C9 torsion angle of 179.94 (12)° in A and 178.99 (12)° in B. One cation [A] is almost planar while the other [B] is slightly twisted; the dihedral angle between the pyridinium and benzene rings is 3.98 (6)° in the cation A and 9.88 (7)° in B. The orientation of the anion with respect to cations A and B is indicated by dihedral angles between the benzene ring of the anion and the pyridinium rings of the cations A and B of 61.20 (6) and 64.25 (6)°, respectively. Bond distances in both cations and anion have normal values (Allen et al., 1987) and are comparable with those observed in related structures (Fun et al., 2009a,b).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations are stacked in an antiparallel manner along the a axis while the anions are linked into chains along the same direction. The cations are linked to the interstitial I- ions by C—H···I weak interactions and are linked to anionic chains through C—H···O weak interactions (Table 1) forming a three-dimensional network. The crystal structure is further stabilized by C—H···π (Table 1) interactions, and π–π interactions with a Cg1···Cg3 distance of 3.5805 (8) Å (Cg1 and Cg3 are centroids of the C1A–C6A and C9B–C13B/N1B rings respectively. In addition, the crystal structure also shows short C···O [2.9706 (16) Å] and Cl···I [3.5917 (3) Å] contacts.

Experimental

(E)-1-Methyl-4-styrylpyridinium iodide (compound A) was prepared by mixing 1:1:1 molar ratio solutions of 1,4-dimethylpyridinium iodide (2 g, 8.5 mmol), benzaldehyde (0.86 ml, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in methanol (40 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The yellow solid which formed was filtered and washed with diethyl ether. The title compound was prepared by mixing the compound A (2.75 g, 8.5 mmol) and silver(I) 4-chlorobenzenesulfonate (2.54 g, 8.5 mmol) (Chantrapromma et al., 2007) in methanol (100 ml). The mixture solution was stirred for 30 min, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as a yellow solid. Yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from a methanol solution by slow evaporation at room temperature over a few weeks (m.p. 468-469 K).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.69 Å from I1 and the deepest hole is located at 1.14 Å from I1. The crystal under investigation was an inversion twin, with a ratio of 61.7 (5):38.3 (5) for the two components.

Figures

Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound viewed down the b axis. C—H···O and C—H···I interactions are shown as dashed lines.

Crystal data

2C14H14N+·C6H4ClO3S·IF(000) = 720
Mr = 711.04Dx = 1.518 Mg m3
Monoclinic, P21Melting point = 468–469 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.1103 (1) ÅCell parameters from 13195 reflections
b = 20.5054 (3) Åθ = 2.0–35.0°
c = 9.5549 (2) ŵ = 1.22 mm1
β = 101.799 (1)°T = 100 K
V = 1555.45 (4) Å3Needle, yellow
Z = 20.52 × 0.23 × 0.22 mm

Data collection

Bruker APEXII CCD area-detector diffractometer13195 independent reflections
Radiation source: sealed tube12932 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 35.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→13
Tmin = 0.569, Tmax = 0.771k = −32→33
30676 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049w = 1/[σ2(Fo2) + (0.0253P)2 + 0.205P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
13195 reflectionsΔρmax = 1.12 e Å3
382 parametersΔρmin = −0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 6221 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.383 (5)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.971569 (9)−0.060603 (4)0.651289 (7)0.01701 (2)
Cl10.67341 (4)0.547963 (16)0.28511 (4)0.02196 (6)
S10.03835 (4)0.730613 (14)0.12930 (3)0.01312 (5)
O10.06242 (12)0.77622 (5)0.24883 (10)0.01933 (17)
O2−0.10740 (12)0.68847 (5)0.12227 (11)0.02079 (18)
O30.04572 (13)0.76183 (5)−0.00555 (10)0.02012 (18)
C10.37016 (15)0.69739 (6)0.13653 (14)0.0164 (2)
H1A0.37810.73740.09250.020*
C20.51192 (16)0.65747 (6)0.17238 (14)0.0177 (2)
H2A0.61460.67040.15240.021*
C30.49665 (16)0.59796 (6)0.23854 (13)0.0166 (2)
C40.34485 (16)0.57690 (6)0.26735 (14)0.0178 (2)
H4A0.33710.53670.31040.021*
C50.20354 (15)0.61712 (6)0.23060 (13)0.0162 (2)
H5A0.10060.60360.24890.019*
C60.21641 (14)0.67745 (6)0.16659 (12)0.01420 (19)
N1A1.07500 (13)0.22845 (5)0.46320 (11)0.01458 (17)
C1A0.48773 (16)−0.01117 (6)0.08410 (13)0.0167 (2)
H1AA0.50100.02660.03370.020*
C2A0.37605 (13)−0.05929 (10)0.02004 (11)0.01769 (17)
H2AA0.3156−0.0535−0.07290.021*
C3A0.35455 (17)−0.11606 (7)0.09470 (15)0.0190 (2)
H3AA0.2795−0.14800.05200.023*
C4A0.44606 (18)−0.12468 (7)0.23355 (15)0.0204 (2)
H4AA0.4319−0.16250.28360.024*
C5A0.55848 (17)−0.07700 (6)0.29767 (14)0.0182 (2)
H5AA0.6197−0.08340.39010.022*
C6A0.58075 (15)−0.01937 (6)0.22463 (13)0.01479 (19)
C7A0.70002 (15)0.02915 (6)0.29811 (13)0.01519 (19)
H7AA0.75710.01880.39010.018*
C8A0.73513 (15)0.08732 (6)0.24553 (13)0.01525 (19)
H8AA0.67900.09830.15360.018*
C9A0.85493 (14)0.13424 (6)0.32263 (12)0.01350 (18)
C10A0.95355 (16)0.12280 (6)0.45995 (12)0.01550 (19)
H10A0.94690.08290.50490.019*
C11A1.05955 (16)0.17068 (6)0.52732 (13)0.0160 (2)
H11A1.12190.16310.61890.019*
C12A0.98620 (16)0.24042 (6)0.32967 (13)0.0160 (2)
H12A0.99980.27980.28530.019*
C13A0.87579 (15)0.19443 (6)0.25929 (13)0.01551 (19)
H13A0.81410.20350.16820.019*
C14A1.19046 (16)0.27831 (6)0.53982 (14)0.0181 (2)
H14A1.15090.32090.50720.027*
H14B1.30130.27160.52150.027*
H14C1.19430.27480.64060.027*
N1B−0.04690 (13)−0.05269 (6)0.10397 (12)0.0163 (2)
C1B0.52680 (16)0.20510 (7)0.42045 (13)0.0170 (2)
H1BA0.53330.16690.47380.020*
C2B0.62871 (17)0.25784 (7)0.47254 (14)0.0197 (2)
H2BA0.70300.25470.56040.024*
C3B0.61999 (19)0.31539 (7)0.39368 (16)0.0242 (3)
H3BA0.68790.35070.42890.029*
C4B0.5092 (2)0.31970 (8)0.26224 (18)0.0299 (3)
H4BA0.50330.35800.20930.036*
C5B0.4076 (2)0.26720 (7)0.20969 (16)0.0251 (3)
H5BA0.33410.27060.12150.030*
C6B0.41412 (15)0.20902 (6)0.28785 (13)0.0160 (2)
C7B0.30241 (15)0.15565 (6)0.22664 (13)0.0163 (2)
H7BA0.23870.16200.13510.020*
C8B0.28271 (15)0.09829 (6)0.28959 (13)0.0160 (2)
H8BA0.34670.09070.38060.019*
C9B0.16733 (15)0.04727 (6)0.22408 (13)0.01487 (19)
C10B0.07550 (16)0.05083 (6)0.08199 (13)0.0167 (2)
H10B0.08610.08720.02630.020*
C11B−0.02934 (16)0.00070 (6)0.02581 (13)0.0173 (2)
H11B−0.08950.0036−0.06790.021*
C12B0.03766 (14)−0.05758 (10)0.24086 (12)0.01881 (19)
H12B0.0237−0.09440.29410.023*
C13B0.14428 (16)−0.00860 (6)0.30211 (13)0.0178 (2)
H13B0.2017−0.01260.39650.021*
C14B−0.15834 (18)−0.10610 (7)0.03712 (16)0.0211 (2)
H14D−0.1210−0.1215−0.04600.032*
H14E−0.2717−0.09020.00980.032*
H14F−0.1546−0.14120.10420.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.01966 (3)0.01429 (3)0.01623 (3)−0.00068 (3)0.00170 (2)−0.00045 (3)
Cl10.01781 (12)0.01998 (13)0.02531 (14)0.00622 (10)−0.00208 (10)−0.00453 (11)
S10.01285 (11)0.01510 (12)0.01106 (10)0.00126 (9)0.00161 (8)−0.00187 (9)
O10.0200 (4)0.0214 (4)0.0153 (4)0.0047 (3)0.0005 (3)−0.0054 (3)
O20.0129 (4)0.0241 (5)0.0247 (5)−0.0027 (3)0.0023 (3)−0.0021 (4)
O30.0232 (4)0.0231 (5)0.0149 (4)0.0065 (4)0.0058 (3)0.0023 (3)
C10.0142 (4)0.0151 (5)0.0202 (5)−0.0006 (4)0.0041 (4)−0.0008 (4)
C20.0135 (4)0.0182 (5)0.0211 (5)0.0002 (4)0.0028 (4)−0.0024 (4)
C30.0152 (5)0.0163 (5)0.0168 (5)0.0029 (4)−0.0005 (4)−0.0044 (4)
C40.0185 (5)0.0150 (5)0.0189 (5)0.0005 (4)0.0012 (4)−0.0005 (4)
C50.0147 (5)0.0157 (5)0.0180 (5)0.0000 (4)0.0030 (4)−0.0011 (4)
C60.0120 (4)0.0151 (5)0.0152 (5)0.0007 (3)0.0021 (3)−0.0024 (4)
N1A0.0161 (4)0.0126 (4)0.0150 (4)−0.0004 (3)0.0032 (3)−0.0001 (3)
C1A0.0178 (5)0.0156 (5)0.0163 (5)0.0002 (4)0.0026 (4)0.0013 (4)
C2A0.0180 (4)0.0169 (4)0.0172 (4)−0.0002 (6)0.0014 (3)−0.0014 (6)
C3A0.0186 (5)0.0161 (5)0.0219 (5)−0.0018 (4)0.0028 (4)−0.0014 (4)
C4A0.0227 (6)0.0161 (5)0.0220 (6)−0.0035 (4)0.0035 (4)0.0028 (4)
C5A0.0196 (5)0.0159 (5)0.0184 (5)−0.0002 (4)0.0021 (4)0.0018 (4)
C6A0.0139 (4)0.0141 (5)0.0162 (5)−0.0001 (4)0.0028 (4)0.0000 (4)
C7A0.0151 (5)0.0144 (5)0.0157 (5)0.0006 (4)0.0023 (4)−0.0002 (4)
C8A0.0147 (4)0.0154 (5)0.0148 (4)0.0002 (4)0.0011 (4)0.0001 (4)
C9A0.0142 (4)0.0140 (5)0.0130 (4)0.0005 (3)0.0046 (3)0.0006 (3)
C10A0.0186 (5)0.0137 (5)0.0139 (4)−0.0005 (4)0.0026 (4)0.0015 (4)
C11A0.0200 (5)0.0146 (5)0.0130 (4)0.0004 (4)0.0025 (4)0.0014 (4)
C12A0.0179 (5)0.0148 (5)0.0153 (5)−0.0001 (4)0.0037 (4)0.0026 (4)
C13A0.0166 (5)0.0153 (5)0.0144 (4)−0.0004 (4)0.0025 (4)0.0030 (4)
C14A0.0182 (5)0.0157 (5)0.0205 (5)−0.0032 (4)0.0040 (4)−0.0026 (4)
N1B0.0153 (4)0.0137 (6)0.0201 (4)0.0012 (3)0.0042 (3)−0.0024 (4)
C1B0.0158 (5)0.0200 (5)0.0145 (5)0.0018 (4)0.0016 (4)−0.0005 (4)
C2B0.0157 (5)0.0248 (6)0.0179 (5)0.0003 (4)0.0020 (4)−0.0047 (4)
C3B0.0228 (6)0.0229 (6)0.0260 (6)−0.0064 (5)0.0032 (5)−0.0038 (5)
C4B0.0351 (8)0.0214 (7)0.0297 (7)−0.0089 (6)−0.0018 (6)0.0058 (5)
C5B0.0270 (7)0.0234 (6)0.0214 (6)−0.0048 (5)−0.0032 (5)0.0053 (5)
C6B0.0145 (5)0.0178 (5)0.0153 (5)−0.0007 (4)0.0021 (4)0.0000 (4)
C7B0.0152 (4)0.0181 (5)0.0146 (4)0.0003 (4)0.0009 (4)−0.0004 (4)
C8B0.0149 (5)0.0175 (5)0.0150 (5)0.0007 (4)0.0018 (4)−0.0004 (4)
C9B0.0144 (4)0.0149 (5)0.0154 (5)0.0013 (4)0.0033 (4)−0.0001 (4)
C10B0.0184 (5)0.0161 (5)0.0153 (5)−0.0004 (4)0.0025 (4)0.0004 (4)
C11B0.0185 (5)0.0165 (5)0.0163 (5)0.0004 (4)0.0023 (4)−0.0008 (4)
C12B0.0196 (4)0.0164 (5)0.0203 (4)0.0006 (6)0.0038 (3)0.0038 (6)
C13B0.0191 (5)0.0175 (5)0.0163 (5)0.0008 (4)0.0028 (4)0.0015 (4)
C14B0.0206 (5)0.0154 (5)0.0267 (6)−0.0006 (4)0.0032 (5)−0.0049 (4)

Geometric parameters (Å, °)

Cl1—C31.7445 (13)C11A—H11A0.93
S1—O31.4509 (10)C12A—C13A1.3775 (18)
S1—O21.4547 (10)C12A—H12A0.93
S1—O11.4581 (10)C13A—H13A0.93
S1—C61.7861 (12)C14A—H14A0.96
C1—C21.3958 (18)C14A—H14B0.96
C1—C61.3968 (17)C14A—H14C0.96
C1—H1A0.93N1B—C11B1.3490 (18)
C2—C31.3914 (19)N1B—C12B1.3507 (15)
C2—H2A0.93N1B—C14B1.4793 (17)
C3—C41.3844 (19)C1B—C2B1.3901 (19)
C4—C51.3972 (18)C1B—C6B1.4047 (16)
C4—H4A0.93C1B—H1BA0.93
C5—C61.3935 (18)C2B—C3B1.394 (2)
C5—H5A0.93C2B—H2BA0.93
N1A—C11A1.3512 (16)C3B—C4B1.389 (2)
N1A—C12A1.3531 (15)C3B—H3BA0.93
N1A—C14A1.4758 (16)C4B—C5B1.386 (2)
C1A—C2A1.394 (2)C4B—H4BA0.93
C1A—C6A1.4093 (17)C5B—C6B1.4026 (19)
C1A—H1AA0.93C5B—H5BA0.93
C2A—C3A1.395 (2)C6B—C7B1.4643 (18)
C2A—H2AA0.93C7B—C8B1.3454 (18)
C3A—C4A1.3927 (19)C7B—H7BA0.93
C3A—H3AA0.93C8B—C9B1.4568 (17)
C4A—C5A1.3907 (18)C8B—H8BA0.93
C4A—H4AA0.93C9B—C13B1.4002 (18)
C5A—C6A1.4027 (18)C9B—C10B1.4105 (17)
C5A—H5AA0.93C10B—C11B1.3716 (18)
C6A—C7A1.4632 (17)C10B—H10B0.93
C7A—C8A1.3470 (17)C11B—H11B0.93
C7A—H7AA0.93C12B—C13B1.375 (2)
C8A—C9A1.4559 (16)C12B—H12B0.93
C8A—H8AA0.93C13B—H13B0.93
C9A—C13A1.4000 (17)C14B—H14D0.96
C9A—C10A1.4096 (16)C14B—H14E0.96
C10A—C11A1.3751 (17)C14B—H14F0.96
C10A—H10A0.93
O3—S1—O2113.69 (6)N1A—C12A—C13A120.24 (11)
O3—S1—O1112.92 (6)N1A—C12A—H12A119.9
O2—S1—O1113.24 (6)C13A—C12A—H12A119.9
O3—S1—C6105.54 (6)C12A—C13A—C9A121.10 (11)
O2—S1—C6105.24 (6)C12A—C13A—H13A119.4
O1—S1—C6105.18 (5)C9A—C13A—H13A119.4
C2—C1—C6120.20 (12)N1A—C14A—H14A109.5
C2—C1—H1A119.9N1A—C14A—H14B109.5
C6—C1—H1A119.9H14A—C14A—H14B109.5
C3—C2—C1118.72 (12)N1A—C14A—H14C109.5
C3—C2—H2A120.6H14A—C14A—H14C109.5
C1—C2—H2A120.6H14B—C14A—H14C109.5
C4—C3—C2121.96 (12)C11B—N1B—C12B120.41 (12)
C4—C3—Cl1118.93 (10)C11B—N1B—C14B119.09 (11)
C2—C3—Cl1119.10 (10)C12B—N1B—C14B120.50 (12)
C3—C4—C5118.88 (12)C2B—C1B—C6B120.52 (12)
C3—C4—H4A120.6C2B—C1B—H1BA119.7
C5—C4—H4A120.6C6B—C1B—H1BA119.7
C6—C5—C4120.21 (12)C1B—C2B—C3B120.29 (12)
C6—C5—H5A119.9C1B—C2B—H2BA119.9
C4—C5—H5A119.9C3B—C2B—H2BA119.9
C5—C6—C1120.01 (11)C4B—C3B—C2B119.62 (13)
C5—C6—S1119.96 (9)C4B—C3B—H3BA120.2
C1—C6—S1119.98 (9)C2B—C3B—H3BA120.2
C11A—N1A—C12A120.38 (11)C5B—C4B—C3B120.32 (14)
C11A—N1A—C14A119.39 (10)C5B—C4B—H4BA119.8
C12A—N1A—C14A120.23 (10)C3B—C4B—H4BA119.8
C2A—C1A—C6A120.48 (12)C4B—C5B—C6B120.84 (13)
C2A—C1A—H1AA119.8C4B—C5B—H5BA119.6
C6A—C1A—H1AA119.8C6B—C5B—H5BA119.6
C1A—C2A—C3A120.29 (10)C5B—C6B—C1B118.41 (12)
C1A—C2A—H2AA119.9C5B—C6B—C7B118.04 (11)
C3A—C2A—H2AA119.9C1B—C6B—C7B123.55 (11)
C4A—C3A—C2A119.68 (12)C8B—C7B—C6B126.53 (11)
C4A—C3A—H3AA120.2C8B—C7B—H7BA116.7
C2A—C3A—H3AA120.2C6B—C7B—H7BA116.7
C5A—C4A—C3A120.27 (12)C7B—C8B—C9B124.07 (11)
C5A—C4A—H4AA119.9C7B—C8B—H8BA118.0
C3A—C4A—H4AA119.9C9B—C8B—H8BA118.0
C4A—C5A—C6A120.84 (12)C13B—C9B—C10B116.95 (11)
C4A—C5A—H5AA119.6C13B—C9B—C8B120.18 (11)
C6A—C5A—H5AA119.6C10B—C9B—C8B122.87 (11)
C5A—C6A—C1A118.44 (11)C11B—C10B—C9B120.06 (12)
C5A—C6A—C7A118.29 (11)C11B—C10B—H10B120.0
C1A—C6A—C7A123.27 (11)C9B—C10B—H10B120.0
C8A—C7A—C6A126.34 (11)N1B—C11B—C10B121.25 (11)
C8A—C7A—H7AA116.8N1B—C11B—H11B119.4
C6A—C7A—H7AA116.8C10B—C11B—H11B119.4
C7A—C8A—C9A124.51 (11)N1B—C12B—C13B120.56 (14)
C7A—C8A—H8AA117.7N1B—C12B—H12B119.7
C9A—C8A—H8AA117.7C13B—C12B—H12B119.7
C13A—C9A—C10A116.96 (11)C12B—C13B—C9B120.77 (12)
C13A—C9A—C8A119.41 (10)C12B—C13B—H13B119.6
C10A—C9A—C8A123.64 (11)C9B—C13B—H13B119.6
C11A—C10A—C9A119.89 (11)N1B—C14B—H14D109.5
C11A—C10A—H10A120.1N1B—C14B—H14E109.5
C9A—C10A—H10A120.1H14D—C14B—H14E109.5
N1A—C11A—C10A121.38 (11)N1B—C14B—H14F109.5
N1A—C11A—H11A119.3H14D—C14B—H14F109.5
C10A—C11A—H11A119.3H14E—C14B—H14F109.5
C6—C1—C2—C3−0.17 (18)C12A—N1A—C11A—C10A−0.33 (19)
C1—C2—C3—C41.13 (19)C14A—N1A—C11A—C10A−179.97 (12)
C1—C2—C3—Cl1−179.50 (10)C9A—C10A—C11A—N1A−1.70 (19)
C2—C3—C4—C5−0.92 (19)C11A—N1A—C12A—C13A1.72 (18)
Cl1—C3—C4—C5179.71 (9)C14A—N1A—C12A—C13A−178.65 (12)
C3—C4—C5—C6−0.26 (18)N1A—C12A—C13A—C9A−1.06 (19)
C4—C5—C6—C11.19 (18)C10A—C9A—C13A—C12A−0.91 (18)
C4—C5—C6—S1−176.40 (9)C8A—C9A—C13A—C12A179.10 (12)
C2—C1—C6—C5−0.97 (18)C6B—C1B—C2B—C3B0.1 (2)
C2—C1—C6—S1176.61 (10)C1B—C2B—C3B—C4B−0.3 (2)
O3—S1—C6—C5−143.17 (10)C2B—C3B—C4B—C5B0.1 (3)
O2—S1—C6—C5−22.64 (11)C3B—C4B—C5B—C6B0.1 (3)
O1—S1—C6—C597.21 (11)C4B—C5B—C6B—C1B−0.3 (2)
O3—S1—C6—C139.25 (11)C4B—C5B—C6B—C7B179.55 (15)
O2—S1—C6—C1159.77 (10)C2B—C1B—C6B—C5B0.2 (2)
O1—S1—C6—C1−80.38 (11)C2B—C1B—C6B—C7B−179.66 (12)
C6A—C1A—C2A—C3A0.28 (19)C5B—C6B—C7B—C8B−175.19 (14)
C1A—C2A—C3A—C4A−0.4 (2)C1B—C6B—C7B—C8B4.6 (2)
C2A—C3A—C4A—C5A0.0 (2)C6B—C7B—C8B—C9B178.99 (12)
C3A—C4A—C5A—C6A0.5 (2)C7B—C8B—C9B—C13B−174.52 (13)
C4A—C5A—C6A—C1A−0.63 (19)C7B—C8B—C9B—C10B5.9 (2)
C4A—C5A—C6A—C7A179.60 (12)C13B—C9B—C10B—C11B−0.56 (18)
C2A—C1A—C6A—C5A0.22 (19)C8B—C9B—C10B—C11B179.04 (12)
C2A—C1A—C6A—C7A179.98 (12)C12B—N1B—C11B—C10B0.77 (19)
C5A—C6A—C7A—C8A−178.90 (13)C14B—N1B—C11B—C10B−178.48 (12)
C1A—C6A—C7A—C8A1.3 (2)C9B—C10B—C11B—N1B−0.10 (19)
C6A—C7A—C8A—C9A179.94 (12)C11B—N1B—C12B—C13B−0.73 (19)
C7A—C8A—C9A—C13A−177.28 (12)C14B—N1B—C12B—C13B178.51 (12)
C7A—C8A—C9A—C10A2.7 (2)N1B—C12B—C13B—C9B0.0 (2)
C13A—C9A—C10A—C11A2.25 (18)C10B—C9B—C13B—C12B0.59 (19)
C8A—C9A—C10A—C11A−177.76 (12)C8B—C9B—C13B—C12B−179.02 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.363.2818 (17)171
C2B—H2BA···O1ii0.932.393.2829 (17)161
C10B—H10B···O2iii0.932.543.4711 (16)178
C11A—H11A···O2ii0.932.553.3109 (16)139
C7B—H7BA···O2iii0.932.533.4514 (16)171
C13A—H13A···O3iv0.932.422.9706 (16)118
C14A—H14A···I1v0.962.933.8718 (13)168
C14A—H14C···O1ii0.962.523.1591 (16)124
C14A—H14B···Cg2i0.962.713.5804 (15)152
C14B—H14E···Cg1vi0.962.823.5551 (16)134

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1; (iii) −x, y−1/2, −z; (iv) −x+1, y−1/2, −z; (v) −x+2, y+1/2, −z+1; (vi) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2919).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883. [PMC free article] [PubMed]
  • Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144–o1145. [PMC free article] [PubMed]
  • Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009a). Acta Cryst. E65, o1554–o1555. [PMC free article] [PubMed]
  • Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009b). Acta Cryst. E65, o1934–o1935. [PMC free article] [PubMed]
  • Lin, Y. Y., Rajesh, N. P., Raghavan, P., Ramasamy, P. & Huang, Y. C. (2002). Mater. Lett.56, 1074–1077.
  • Prasad, P. N. & Williams, D. J. (1991). Introduction to Nonlinear Optical Effects in Molecules and Polymers New York: John Wiley.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography