PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1488–m1489.
Published online 2009 October 31. doi:  10.1107/S1600536809044717
PMCID: PMC2971028

Bis(2,2′-bi-1H-imidazole-κ2 N 3,N 3′)(thio­cyanato-κN)copper(II) chloride

Abstract

In the title salt, [Cu(NCS)(C6H6N4)2]Cl, the CuII atom adopts a five-coordinated square-pyramidal geometry consisting of an N atom from a thio­cyanate anion and four N atoms from two chealting biimidazole ligands. The thio­cyanate ligand occupies the axial position and is, like the CuII centre, located on a mirror plane. The cation and anion are linked into a linear chain by N—H(...)S and N—H(...)Cl hydrogen bonds.

Related literature

For the neutral mol­ecule 2,2′-biimidazole (H2biim) and its monoanionic derivative (Hbiim), see: Tadokoro & Nakasuji (2000 [triangle]). Thio­cyanate is a versatile bridging ligand, see: Ribas et al. (1998 [triangle]). For Cu—N bond lengths in biimidazole–Cu complexes, see: Govor et al. (2008 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-m1488-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)(C6H6N4)2]Cl
  • M r = 425.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1488-efi1.jpg
  • a = 12.900 (5) Å
  • b = 9.442 (4) Å
  • c = 12.888 (5) Å
  • V = 1569.8 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.71 mm−1
  • T = 298 K
  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.610, T max = 0.847
  • 3518 measured reflections
  • 1291 independent reflections
  • 1254 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.096
  • S = 1.20
  • 1291 reflections
  • 121 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.45 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 539 Friedel pairs
  • Flack parameter: 0.06 (3)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044717/ng2677sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044717/ng2677Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Natural Science Foundation of Shanxi Province (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province in 2008.

supplementary crystallographic information

Comment

The neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative(Hbiim-) is a particular organic target for construction of hybrid materials. Its molecular moieties possess a double property, namely they can be coordinated to metal centres and can act as a donor in hydrogen bonding interactions (Tadokoro et al., 2000). The thiocyanate is a versatile briding ligand (Ribas et al., 1998), we think that the self-assembly of these ligand with metal ions should yield structure fascinating compounds. Thus, the title compound (I) was synthesized and its crystal structure is reported here.

The X-ray crystallographic analysis shows that the crystal structure of (I) consists of [Cu(NCS)(biim)2]+ cation and Cl- anions(Fig 1). Cu(II) ion adopts a five coordinated square pyramidal geometry consisting of a nitrogen atom(N5) from thiocyanato anion and four nitrogen atoms (N1, N1i, N3 and N3i) from two coordinating biimidazole ligands. Four nitrogen atoms of two chelating H2biim ligands form the basal plane of the pyramid and the apical position is occupied by the thiocyanate ligand which is coordinated in the axial position through the nitrogen atom. Bond distances of the Cu—N1 and Cu—N3(biim) [2.014 (6) and 2.031 (5) Å](Table 1) are shorter than the apical Cu1—N5(SCN-) distance[2.344 (10) Å]. These distances lie in the range reported for biimidazole-Cu complexes (Govor et al.,2008). The chelating H2biim ligands are almost planar and dihedral angle of two biimidazole plane is 6.32°. Meanwhile, In the crystal,molecules are linked by hydrogen bond interaction (N—H···Cl) forming the three-dimensional architecture(Fig 2).

Experimental

All chemicals were of reagent grade, were commercially available and were used without further purification. CuCl (0.099 g, 0.10 mmol) dissloved in 10.0 ml of ethanol solution was added to 10.0 ml of ethanol solution of H2biim (0.0134 g, 0.10 mmol) with stirring. Half an hour later, KSCN (0.0195 g, 0.20 mmol) was slowly added above the mixture. Black green crystal of [Cu(biim)2(SCN)]Cl were separated from the mother liquor by slow evaporation at room temperature after two weeks.

Refinement

H atoms attached to C and N(biimidazole) atoms of (I) were placed in geometrically idealized positions with Csp2—H = 0.93Å and N—H=0.86Å and constrained to ride on their parent atoms.

Figures

Fig. 1.
A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level. Symmetrical code (i) 2 - x, y, z
Fig. 2.
The packing view in (I). Cu (Light cyan); Cl (green); S (yellow); N (blue); C (gray)

Crystal data

[Cu(NCS)(C6H6N4)2]ClF(000) = 860
Mr = 425.37Dx = 1.800 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 4272 reflections
a = 12.900 (5) Åθ = 2.1–26.6°
b = 9.442 (4) ŵ = 1.71 mm1
c = 12.888 (5) ÅT = 298 K
V = 1569.8 (11) Å3Block, green
Z = 40.10 × 0.10 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer1291 independent reflections
Radiation source: fine-focus sealed tube1254 reflections with I > 2σ(I)
graphiteRint = 0.046
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→15
Tmin = 0.610, Tmax = 0.847k = −11→10
3518 measured reflectionsl = −13→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.096w = 1/[σ2(Fo2) + (0.0005P)2 + 5.3473P] where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1291 reflectionsΔρmax = 0.45 e Å3
121 parametersΔρmin = −0.45 e Å3
1 restraintAbsolute structure: Flack (1983), 539 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.39548 (11)0.38462 (9)0.0307 (3)
S10.50000.7886 (3)0.1136 (2)0.0476 (7)
N10.6167 (3)0.4872 (6)0.4638 (4)0.0317 (12)
N20.7857 (4)0.4990 (6)0.4874 (4)0.0316 (13)
H2A0.85090.48210.48080.038*
N30.3808 (4)0.2803 (5)0.3256 (4)0.0294 (12)
N40.2133 (4)0.2519 (6)0.3172 (4)0.0333 (13)
H40.14840.26470.32940.040*
N50.50000.5634 (10)0.2506 (7)0.044 (2)
C10.6381 (5)0.5905 (6)0.5367 (5)0.0321 (15)
H10.58930.64660.57030.039*
C20.7418 (5)0.5963 (8)0.5509 (6)0.0369 (18)
H20.77670.65630.59620.044*
C30.7087 (4)0.4344 (7)0.4372 (5)0.0302 (15)
C40.2915 (4)0.3246 (6)0.3605 (4)0.0248 (14)
C50.3575 (5)0.1711 (8)0.2579 (5)0.0359 (16)
H50.40620.11680.22250.043*
C60.2537 (5)0.1550 (10)0.2509 (6)0.0345 (18)
H60.21760.09110.20940.041*
C70.50000.6548 (10)0.1940 (8)0.034 (2)
Cl10.00000.3818 (3)0.4227 (2)0.0501 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0153 (5)0.0344 (6)0.0425 (6)0.0000.000−0.0068 (6)
S10.0303 (13)0.0513 (17)0.0612 (19)0.0000.0000.0124 (14)
N10.019 (2)0.039 (3)0.037 (3)0.004 (2)0.004 (2)0.007 (3)
N20.015 (2)0.033 (3)0.047 (4)0.001 (2)−0.002 (2)−0.004 (3)
N30.019 (2)0.033 (3)0.036 (3)−0.005 (2)−0.002 (2)−0.005 (2)
N40.021 (3)0.037 (3)0.042 (3)−0.001 (2)−0.005 (2)0.002 (3)
N50.031 (4)0.055 (6)0.046 (6)0.0000.000−0.006 (4)
C10.032 (3)0.025 (4)0.040 (4)−0.003 (3)0.003 (3)−0.004 (3)
C20.037 (4)0.041 (5)0.033 (4)−0.005 (3)−0.001 (3)−0.002 (4)
C30.021 (3)0.035 (4)0.035 (4)0.003 (3)0.002 (3)0.003 (3)
C40.018 (3)0.032 (3)0.024 (4)−0.003 (2)−0.002 (2)0.010 (3)
C50.022 (3)0.043 (4)0.042 (4)0.001 (3)0.005 (3)−0.001 (3)
C60.026 (4)0.039 (4)0.038 (4)−0.010 (3)0.001 (3)−0.004 (3)
C70.021 (4)0.026 (5)0.054 (7)0.0000.0000.006 (5)
Cl10.0206 (11)0.0479 (15)0.082 (2)0.0000.000−0.0179 (14)

Geometric parameters (Å, °)

Cu1—N12.014 (6)N4—C41.342 (7)
Cu1—N1i2.014 (6)N4—C61.356 (10)
Cu1—N32.031 (5)N4—H40.8600
Cu1—N3i2.031 (5)N5—C71.130 (13)
Cu1—N52.344 (10)C1—C21.351 (9)
S1—C71.634 (11)C1—H10.9300
N1—C31.332 (7)C2—H20.9300
N1—C11.382 (8)C3—C4i1.432 (8)
N2—C31.333 (8)C4—C3i1.432 (8)
N2—C21.354 (9)C5—C61.352 (9)
N2—H2A0.8600C5—H50.9300
N3—C41.305 (7)C6—H60.9300
N3—C51.383 (8)
N1—Cu1—N1i96.7 (3)C6—N4—H4125.7
N1—Cu1—N3170.3 (2)C7—N5—Cu1172.8 (8)
N1i—Cu1—N381.62 (18)C2—C1—N1108.6 (6)
N1—Cu1—N3i81.62 (18)C2—C1—H1125.7
N1i—Cu1—N3i170.3 (2)N1—C1—H1125.7
N3—Cu1—N3i98.4 (3)C1—C2—N2107.8 (7)
N1—Cu1—N594.7 (2)C1—C2—H2126.1
N1i—Cu1—N594.7 (2)N2—C2—H2126.1
N3—Cu1—N595.0 (2)N1—C3—N2111.6 (6)
N3i—Cu1—N595.0 (2)N1—C3—C4i116.5 (6)
C3—N1—C1105.1 (5)N2—C3—C4i131.9 (6)
C3—N1—Cu1112.0 (5)N3—C4—N4110.9 (5)
C1—N1—Cu1142.9 (4)N3—C4—C3i118.2 (5)
C3—N2—C2106.9 (5)N4—C4—C3i131.0 (6)
C3—N2—H2A126.5C6—C5—N3110.0 (7)
C2—N2—H2A126.5C6—C5—H5125.0
C4—N3—C5105.3 (5)N3—C5—H5125.0
C4—N3—Cu1111.5 (4)C5—C6—N4105.2 (7)
C5—N3—Cu1143.1 (4)C5—C6—H6127.4
C4—N4—C6108.6 (5)N4—C6—H6127.4
C4—N4—H4125.7N5—C7—S1179.1 (10)
N1i—Cu1—N1—C3172.7 (3)C1—N1—C3—N2−0.8 (7)
N3i—Cu1—N1—C32.3 (4)Cu1—N1—C3—N2177.9 (4)
N5—Cu1—N1—C3−92.0 (5)C1—N1—C3—C4i−179.4 (5)
N1i—Cu1—N1—C1−9.4 (9)Cu1—N1—C3—C4i−0.6 (7)
N3i—Cu1—N1—C1−179.7 (7)C2—N2—C3—N11.1 (8)
N5—Cu1—N1—C185.9 (7)C2—N2—C3—C4i179.4 (6)
N1i—Cu1—N3—C43.8 (4)C5—N3—C4—N4−1.3 (7)
N3i—Cu1—N3—C4173.9 (3)Cu1—N3—C4—N4177.1 (4)
N5—Cu1—N3—C4−90.3 (4)C5—N3—C4—C3i177.0 (5)
N1i—Cu1—N3—C5−178.8 (8)Cu1—N3—C4—C3i−4.6 (6)
N3i—Cu1—N3—C5−8.6 (9)C6—N4—C4—N30.2 (8)
N5—Cu1—N3—C587.1 (7)C6—N4—C4—C3i−177.8 (7)
C3—N1—C1—C20.2 (7)C4—N3—C5—C62.0 (8)
Cu1—N1—C1—C2−177.8 (6)Cu1—N3—C5—C6−175.5 (6)
N1—C1—C2—N20.5 (8)N3—C5—C6—N4−1.9 (9)
C3—N2—C2—C1−1.0 (8)C4—N4—C6—C51.1 (9)

Symmetry codes: (i) −x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1ii0.862.273.092 (5)160
N4—H4···Cl10.862.523.305 (6)153
N2—H2A···S1iii0.863.363.782 (6)113
N4—H4···S1iv0.863.383.818 (6)114

Symmetry codes: (ii) x+1, y, z; (iii) −x+3/2, −y+3/2, z+1/2; (iv) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2677).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Govor, E. V., Lysenko, A. B., Domasevitch, K. V., Rusanov, E. B. & Chernega, A. N. (2008). Acta Cryst. C64, m117–m120. [PubMed]
  • Ribas, J., Diaz, C., Costa, R., Tercero, J., Solans, X., Font-Bardia, M. & Stoeckli-Evans, H. (1998). Inorg. Chem.37, 233–239.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev.198, 205–218.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography