PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2936.
Published online 2009 October 31. doi:  10.1107/S1600536809044699
PMCID: PMC2971015

2-Hydroxy­benzyl alcohol–phenanthroline (1/1)

Abstract

Crystals of the title compound, C12H8N2·C7H8O2, were obtained during cocrystallization experiments of a compound with two hydrogen-bond donors (2-hydroxy­benzyl alcohol) with another compound containing two hydrogen-bond acceptors (phenanthroline). Unexpectedly, the two mol­ecules do not form dimers with two O—H(...)N hydrogen bonds connecting the two mol­ecules. However, one of the hydr­oxy groups forms a bifurcated hydrogen bond to both phenanthroline N atoms, whereas the other hydr­oxy group forms an O—H(...)O hydrogen bond to a symmetry-equivalent 2-hydroxy­benzyl alcohol mol­ecule. In addition, the crystal packing is stabilized by π–π inter­actions between the two phenanthroline ring systems, with a centroid–centroid distance of 3.570  Å.

Related literature

For co-crystallization experiments, see: Ton & Bolte (2005 [triangle]); Tutughamiarso et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2936-scheme1.jpg

Experimental

Crystal data

  • C12H8N2·C7H8O2
  • M r = 304.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2936-efi1.jpg
  • a = 7.264 (1) Å
  • b = 20.256 (3) Å
  • c = 11.082 (2) Å
  • β = 109.13 (3)°
  • V = 1540.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 173 K
  • 0.60 × 0.50 × 0.30 mm

Data collection

  • Stoe IPDS II two-circle diffractometer
  • Absorption correction: none
  • 20425 measured reflections
  • 2885 independent reflections
  • 2518 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.099
  • S = 1.06
  • 2885 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044699/om2291sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044699/om2291Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). In this work, we wanted to cocrystallize phenanthroline and 2-hydroxybenzyl alcohol. However, the cocrystal, we obtained, did not show the expected AA/DD pattern, i.e. with two O—H···N hydrogen bonds connecting the two molecules to a dimer. However, one of the hydroxy groups forms a bifurcated hydrogen bonds to both phenanthroline N atoms, whereas the other hydroxy group forms a O—H···O hydrogen bond to a symmetry equivalent 2-hydroxybenzyl alcohol molecule. In addition, the crystal packing is stabilized by π–π interactions between two phenanthroline ring systems forming a centrosymmetric dimer with a centroid···centroid distance of 3.570 Å. The second molecule is generated by the symmetry operation 1 - x, -y, 1 - z.

Experimental

The complex consisting of 1,10-phenanthroline and 2-hydroxybenzylenealcohol was obtained by to the method of isothermal vaporization. 1,10-phenanthroline and 2-hydroxybenzylenealcohol were added in an equimolar ratio (10 mmol) into a flask. Afterwards chloroform was added dropwise until the substances were completely dissolved. Then, the flask was sealed and set aside at room temperature. After two weeks crystals of the complex were obtained.

Refinement

Hydrogen atoms were located in a difference Fourier map but those bonded to C were included in calculated positions [C—H = 0.93 - 0.99 Å] and refined as riding [Uiso(H) = 1.2Ueq(C)]. H atoms bonded to O were freely refined.

Figures

Fig. 1.
A view of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure of the title compound viewed along the c axis. Hydrogen atoms bonded to C omitted. Hydrogen bonds shown as dashed lines.

Crystal data

C12H8N2·C7H8O2F(000) = 640
Mr = 304.34Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11957 reflections
a = 7.264 (1) Åθ = 3.0–25.0°
b = 20.256 (3) ŵ = 0.09 mm1
c = 11.082 (2) ÅT = 173 K
β = 109.13 (3)°Block, colourless
V = 1540.6 (4) Å30.60 × 0.50 × 0.30 mm
Z = 4

Data collection

Stoe IPDS II two-circle diffractometer2518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 25.7°, θmin = 2.8°
ω scansh = −8→8
20425 measured reflectionsk = −24→24
2885 independent reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2526P] where P = (Fo2 + 2Fc2)/3
2885 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.68091 (17)0.08958 (5)0.49625 (11)0.0357 (3)
N20.89787 (17)0.03273 (5)0.72184 (11)0.0371 (3)
C10.72912 (18)0.02470 (6)0.49544 (13)0.0330 (3)
C20.5740 (2)0.11589 (7)0.38637 (14)0.0418 (3)
H20.54030.16120.38600.050*
C30.5071 (2)0.08146 (8)0.27060 (15)0.0478 (4)
H30.43030.10290.19450.057*
C40.5553 (2)0.01591 (8)0.26982 (15)0.0477 (4)
H40.5114−0.00870.19270.057*
C50.6694 (2)−0.01440 (7)0.38328 (14)0.0398 (3)
C60.7275 (2)−0.08270 (7)0.38997 (17)0.0480 (4)
H60.6881−0.10880.31460.058*
C70.8361 (2)−0.11014 (7)0.50050 (18)0.0497 (4)
H70.8733−0.15520.50170.060*
C80.8973 (2)−0.07275 (6)0.61706 (15)0.0406 (3)
C91.0057 (2)−0.10017 (7)0.73516 (18)0.0513 (4)
H91.0437−0.14520.74020.062*
C101.0568 (2)−0.06217 (8)0.84299 (18)0.0526 (4)
H101.1285−0.08030.92380.063*
C111.0001 (2)0.00436 (7)0.83078 (15)0.0459 (4)
H111.03760.03080.90570.055*
C120.84467 (19)−0.00511 (6)0.61498 (13)0.0342 (3)
O10.96385 (12)0.19916 (5)0.97867 (8)0.0343 (2)
H1O0.90400.18230.89700.051*
O21.25869 (12)0.33737 (4)1.24759 (8)0.0299 (2)
H2O1.27500.36991.20060.045*
C131.16077 (16)0.20302 (6)1.00360 (11)0.0254 (3)
C141.26346 (16)0.24552 (6)1.10244 (11)0.0252 (3)
C151.46410 (17)0.25043 (6)1.13083 (12)0.0300 (3)
H151.53630.27851.19840.036*
C161.56203 (18)0.21500 (6)1.06219 (13)0.0333 (3)
H161.69920.21921.08290.040*
C171.45820 (18)0.17387 (6)0.96403 (12)0.0325 (3)
H171.52390.15010.91640.039*
C181.25733 (18)0.16711 (6)0.93473 (12)0.0293 (3)
H181.18630.13820.86820.035*
C191.15095 (17)0.28505 (6)1.17128 (11)0.0297 (3)
H19A1.03330.30371.10710.036*
H19B1.10690.25481.22650.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0415 (6)0.0277 (5)0.0471 (7)−0.0037 (5)0.0269 (5)−0.0039 (5)
N20.0471 (7)0.0279 (6)0.0456 (7)−0.0038 (5)0.0277 (5)−0.0007 (5)
C10.0352 (7)0.0267 (6)0.0486 (8)−0.0082 (5)0.0295 (6)−0.0070 (5)
C20.0450 (8)0.0384 (8)0.0490 (8)−0.0024 (6)0.0248 (7)0.0022 (6)
C30.0454 (8)0.0580 (10)0.0469 (8)−0.0112 (7)0.0244 (7)0.0013 (7)
C40.0474 (8)0.0588 (10)0.0470 (8)−0.0211 (7)0.0293 (7)−0.0152 (7)
C50.0415 (7)0.0374 (7)0.0552 (9)−0.0164 (6)0.0356 (7)−0.0155 (6)
C60.0556 (9)0.0368 (8)0.0695 (11)−0.0192 (7)0.0449 (9)−0.0242 (7)
C70.0539 (9)0.0247 (7)0.0892 (13)−0.0095 (6)0.0490 (9)−0.0169 (7)
C80.0388 (7)0.0240 (6)0.0719 (10)−0.0049 (5)0.0357 (7)−0.0035 (6)
C90.0459 (8)0.0278 (7)0.0909 (13)0.0019 (6)0.0371 (9)0.0081 (8)
C100.0484 (9)0.0439 (8)0.0702 (11)0.0004 (7)0.0257 (8)0.0165 (8)
C110.0534 (9)0.0402 (8)0.0509 (9)−0.0057 (6)0.0263 (7)0.0027 (6)
C120.0365 (7)0.0250 (6)0.0538 (8)−0.0066 (5)0.0321 (6)−0.0056 (5)
O10.0208 (4)0.0510 (6)0.0310 (5)−0.0017 (4)0.0083 (3)−0.0068 (4)
O20.0376 (5)0.0240 (4)0.0281 (4)−0.0015 (3)0.0108 (4)0.0035 (3)
C130.0224 (5)0.0288 (6)0.0254 (6)0.0018 (4)0.0084 (4)0.0058 (5)
C140.0248 (6)0.0253 (6)0.0264 (6)0.0022 (4)0.0094 (5)0.0061 (5)
C150.0254 (6)0.0291 (6)0.0349 (6)−0.0022 (5)0.0090 (5)0.0024 (5)
C160.0232 (6)0.0341 (7)0.0446 (7)0.0017 (5)0.0138 (5)0.0059 (6)
C170.0323 (6)0.0325 (6)0.0380 (7)0.0079 (5)0.0188 (5)0.0061 (5)
C180.0304 (6)0.0299 (6)0.0283 (6)0.0024 (5)0.0105 (5)0.0016 (5)
C190.0263 (6)0.0326 (6)0.0311 (6)−0.0018 (5)0.0104 (5)−0.0024 (5)

Geometric parameters (Å, °)

N1—C21.3230 (19)C10—C111.403 (2)
N1—C11.3609 (17)C10—H100.9500
N2—C111.3235 (19)C11—H110.9500
N2—C121.3562 (17)O1—C131.3674 (14)
C1—C51.4166 (19)O1—H1O0.9310
C1—C121.448 (2)O2—C191.4203 (15)
C2—C31.400 (2)O2—H2O0.8714
C2—H20.9500C13—C181.3980 (17)
C3—C41.374 (2)C13—C141.4006 (17)
C3—H30.9500C14—C151.3901 (17)
C4—C51.401 (2)C14—C191.5165 (16)
C4—H40.9500C15—C161.3979 (18)
C5—C61.441 (2)C15—H150.9500
C6—C71.341 (2)C16—C171.3816 (19)
C6—H60.9500C16—H160.9500
C7—C81.437 (2)C17—C181.3938 (18)
C7—H70.9500C17—H170.9500
C8—C91.402 (2)C18—H180.9500
C8—C121.4206 (18)C19—H19A0.9900
C9—C101.366 (3)C19—H19B0.9900
C9—H90.9500
C2—N1—C1117.24 (12)N2—C11—C10124.36 (15)
C11—N2—C12117.73 (12)N2—C11—H11117.8
N1—C1—C5122.70 (13)C10—C11—H11117.8
N1—C1—C12118.04 (12)N2—C12—C8122.19 (13)
C5—C1—C12119.26 (12)N2—C12—C1118.51 (11)
N1—C2—C3124.43 (14)C8—C12—C1119.30 (12)
N1—C2—H2117.8C13—O1—H1O110.0
C3—C2—H2117.8C19—O2—H2O111.4
C4—C3—C2118.34 (15)O1—C13—C18122.60 (11)
C4—C3—H3120.8O1—C13—C14116.55 (10)
C2—C3—H3120.8C18—C13—C14120.85 (11)
C3—C4—C5119.67 (14)C15—C14—C13118.11 (11)
C3—C4—H4120.2C15—C14—C19123.11 (11)
C5—C4—H4120.2C13—C14—C19118.77 (10)
C4—C5—C1117.62 (13)C14—C15—C16121.53 (12)
C4—C5—C6122.97 (14)C14—C15—H15119.2
C1—C5—C6119.42 (15)C16—C15—H15119.2
C7—C6—C5121.31 (14)C17—C16—C15119.61 (11)
C7—C6—H6119.3C17—C16—H16120.2
C5—C6—H6119.3C15—C16—H16120.2
C6—C7—C8121.26 (13)C16—C17—C18120.15 (11)
C6—C7—H7119.4C16—C17—H17119.9
C8—C7—H7119.4C18—C17—H17119.9
C9—C8—C12117.59 (14)C17—C18—C13119.73 (12)
C9—C8—C7122.96 (14)C17—C18—H18120.1
C12—C8—C7119.44 (14)C13—C18—H18120.1
C10—C9—C8120.10 (14)O2—C19—C14114.26 (10)
C10—C9—H9119.9O2—C19—H19A108.7
C8—C9—H9119.9C14—C19—H19A108.7
C9—C10—C11118.03 (16)O2—C19—H19B108.7
C9—C10—H10121.0C14—C19—H19B108.7
C11—C10—H10121.0H19A—C19—H19B107.6
C2—N1—C1—C5−0.08 (18)C11—N2—C12—C1178.66 (11)
C2—N1—C1—C12−179.49 (11)C9—C8—C12—N20.86 (18)
C1—N1—C2—C30.4 (2)C7—C8—C12—N2179.91 (11)
N1—C2—C3—C4−0.2 (2)C9—C8—C12—C1−178.65 (11)
C2—C3—C4—C5−0.3 (2)C7—C8—C12—C10.40 (18)
C3—C4—C5—C10.55 (19)N1—C1—C12—N20.52 (17)
C3—C4—C5—C6−179.40 (13)C5—C1—C12—N2−178.92 (10)
N1—C1—C5—C4−0.37 (18)N1—C1—C12—C8−179.96 (11)
C12—C1—C5—C4179.04 (11)C5—C1—C12—C80.61 (17)
N1—C1—C5—C6179.58 (11)O1—C13—C14—C15179.69 (10)
C12—C1—C5—C6−1.02 (17)C18—C13—C14—C15−0.63 (17)
C4—C5—C6—C7−179.66 (13)O1—C13—C14—C19−1.68 (15)
C1—C5—C6—C70.40 (19)C18—C13—C14—C19178.01 (11)
C5—C6—C7—C80.6 (2)C13—C14—C15—C160.95 (17)
C6—C7—C8—C9177.95 (13)C19—C14—C15—C16−177.62 (11)
C6—C7—C8—C12−1.0 (2)C14—C15—C16—C17−0.24 (19)
C12—C8—C9—C100.1 (2)C15—C16—C17—C18−0.81 (18)
C7—C8—C9—C10−178.94 (13)C16—C17—C18—C131.12 (18)
C8—C9—C10—C11−0.9 (2)O1—C13—C18—C17179.27 (11)
C12—N2—C11—C10−0.1 (2)C14—C13—C18—C17−0.39 (17)
C9—C10—C11—N21.0 (2)C15—C14—C19—O212.73 (16)
C11—N2—C12—C8−0.86 (18)C13—C14—C19—O2−165.84 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.931.692.6125 (14)168
O2—H2O···N1ii0.872.293.0390 (15)144
O2—H2O···N2ii0.872.152.8663 (14)140

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2291).

References

  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406–o1407.
  • Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography