PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2706.
Published online 2009 October 10. doi:  10.1107/S1600536809040938
PMCID: PMC2971014

3,5,7-Trimeth­oxy-2-(4-methoxy­phen­yl)-4H-1-benzopyran-4-one

Abstract

In the title compound, C19H18O6, also known as 3,4′,5,7-tetra­methoxy­flavone, the dihedral angle between the benzopyran-4-one group and the attached benzene ring is 11.23 (8)°. An intra­molecular C—H(...)O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (0An external file that holds a picture, illustration, etc.
Object name is e-65-o2706-efi4.jpg1) by inter­molecular C—H(...)O hydrogen bonds, which generate R 4 4(20), R 4 4(12) and R 2 2(14) ring motifs. Adjacent networks interact by π–π inter­actions between the pyran ring and its methoxy­phenyl substituent [centroid–centroid distance = 3.5267 (8) Å].

Related literature

For related structures, see: Aree et al. (2009 [triangle]) and the Cambridge Structural Database [Allen (2002 [triangle]); Bruno et al. (2002 [triangle])]. For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2706-scheme1.jpg

Experimental

Crystal data

  • C19H18O6
  • M r = 342.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2706-efi5.jpg
  • a = 8.7854 (3) Å
  • b = 9.2743 (4) Å
  • c = 10.6950 (4) Å
  • α = 70.749 (1)°
  • β = 81.448 (1)°
  • γ = 83.078 (1)°
  • V = 811.15 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.40 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.839, T max = 0.946
  • 5901 measured reflections
  • 3930 independent reflections
  • 2827 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.131
  • S = 1.06
  • 3930 reflections
  • 230 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al. 2006 [triangle]).; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040938/ci2932sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040938/ci2932Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Department of Chemistry and Research Funds from the Faculty of Science, Chulalongkorn University to TA and by the Thailand Research Fund and the Commission on Higher Education (grant No. MRG4980018) to PS.

supplementary crystallographic information

Comment

The title compound, (I), (3,5,7-trimethoxy-2-(4-methoxyphenyl)-4H- 1-benzopyran-4-one or 3,4',5,7-tetramethoxyflavone), (Fig.1), is a secondary metabolite that was isolated from a Thai medicinal plant, Kaempferia parviflora. Several flavones have also been isolated from this plant and their crystal structures have been reported, for example see Aree et al. (2009) and references cited therein. Here, we report the crystal structure of another flavone in an anhydrous form having no strong hydrogen bond donor. Weak C—H···O hydrogen bonds play a key role in stabilizing the crystal lattice.

The molecular structure of (I) deviates from a planar geometry; the interplanar angle between the benzopyran-4-one group and the attached phenyl group is 11.23 (8)° (Fig. 1). A search in the Cambridge Structural Database [Version 1.11 (Allen, 2002); CONQUEST (Bruno et al., 2002)] indicate that this feature is frequently observed . The three methoxy C16, C17 and C19 atoms slightly deviate from the mean planes of the attached benzopyran or phenyl rings by 0.288 (3), -0.119 (3) and 0.355 (3) Å whereas atom C18 deviates from the benzopyran plane by -0.933 (3) Å. The corresponding values of torsion angles are C16—O4—C3—C2 = 3.0 (2)°, C17—O3—C5—C4 = 0.4 (2)°, C19—O6—C13—C12 = -15.9 (2)° and C18—O5—C8—C9 = 111.09 (17)°. The flavone molecule is stabilized by an intramolecular C15—H···O5 hydrogen bond that generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal, molecules are linked to form a ribbon-like structure by intermolecular C18—H18B···O6ii and C19—H19C···.O5iii hydrogen bonds, generating R22(20) and R44(12) ring motifs (Bernstein et al., 1995) (Fig. 2). The adjacent inversion-related ribbons are cross-linked into a two-dimensional network parallel to the (011) by intermolecular C17—H17B···O2i and C17—H17B···O3i hydrogen bonds, generating R22(14) ring motifs (Bernstein et al., 1995) (Fig. 3). The crystal structure is further stabilized by π–π interactions (Fig. 4) between O1/C1/C6-C9 and C10-C15 rings of the molecules in adjacent networks, with a centroid-to-centroid distance of 3.5267 (8) Å.

Experimental

The title compound, (I), was extracted from Kaempferia parviflora, a medicinal plant from the north-east of Thailand. Single crystals of (I) were obtained by slow evaporation of a methanol–water (1:1, v/v) solution at room temperature.

Refinement

All H atoms were located in a difference map and then refined using a riding model, with C-H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C), and C-H = 0.96 Å (methyl) and Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I), with atom numbering and 50% probability displacement ellipsoids. An intramolecular C—H···O hydrogen bond forming an S(6) motif is shown as a dashed line.
Fig. 2.
Part of a ribbon formed by intermolecular C—H···O hydrogen bonds, with R44(20) and R44(12) ring motifs. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A view of R22(14) ring motifs which connect adjacent ribbons. Hydrogen bonds are shown as dashed lines.
Fig. 4.
Part of the crystal structure of (I), showing the stacking of pyran and 4-methoxyphenyl rings. Hydrogen bonds are shown as dashed lines.

Crystal data

C19H18O6Z = 2
Mr = 342.33F(000) = 360
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 8.7854 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2743 (4) ÅCell parameters from 2649 reflections
c = 10.6950 (4) Åθ = 2.9–29.0°
α = 70.749 (1)°µ = 0.11 mm1
β = 81.448 (1)°T = 298 K
γ = 83.078 (1)°Block, colourless
V = 811.15 (5) Å30.40 × 0.22 × 0.18 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3930 independent reflections
Radiation source: fine-focus sealed tube2827 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.839, Tmax = 0.946k = −12→12
5901 measured reflectionsl = −10→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0796P] where P = (Fo2 + 2Fc2)/3
3930 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.09284 (11)−0.00853 (11)0.77045 (10)0.0384 (2)
O2−0.35336 (13)0.11019 (15)0.69876 (14)0.0627 (4)
O3−0.31863 (12)−0.09508 (12)0.56603 (11)0.0472 (3)
O40.14430 (12)−0.41488 (12)0.58844 (11)0.0491 (3)
O5−0.22549 (11)0.24963 (11)0.83872 (10)0.0417 (3)
O60.37277 (13)0.34385 (13)1.08046 (12)0.0554 (3)
C10.02711 (15)−0.08612 (15)0.70567 (13)0.0334 (3)
C20.12382 (16)−0.20556 (15)0.67915 (14)0.0370 (3)
H20.2237−0.22660.70300.044*
C30.06590 (16)−0.29116 (15)0.61632 (13)0.0363 (3)
C4−0.08153 (16)−0.25525 (16)0.57554 (14)0.0377 (3)
H4−0.1168−0.31180.52980.045*
C5−0.17492 (16)−0.13643 (16)0.60281 (13)0.0358 (3)
C6−0.12267 (15)−0.04848 (15)0.67302 (13)0.0337 (3)
C7−0.21732 (16)0.07127 (16)0.71647 (14)0.0381 (3)
C8−0.13869 (16)0.14406 (16)0.78818 (13)0.0343 (3)
C90.01016 (15)0.10572 (15)0.81213 (13)0.0329 (3)
C100.10563 (15)0.16951 (15)0.88037 (13)0.0334 (3)
C110.26309 (17)0.12727 (17)0.87961 (14)0.0397 (3)
H110.30690.05960.83420.048*
C120.35723 (17)0.18231 (17)0.94411 (15)0.0415 (3)
H120.46220.15220.94150.050*
C130.29333 (17)0.28240 (16)1.01227 (14)0.0383 (3)
C140.13743 (18)0.32664 (18)1.01423 (16)0.0464 (4)
H140.09440.39441.05970.056*
C150.04512 (17)0.27193 (18)0.94994 (16)0.0446 (4)
H15−0.05960.30340.95260.054*
C160.2918 (2)−0.4624 (2)0.6324 (2)0.0593 (5)
H16A0.3609−0.38370.58730.089*
H16B0.3308−0.55490.61300.089*
H16C0.2838−0.48080.72680.089*
C17−0.3753 (2)−0.1803 (2)0.49641 (19)0.0556 (4)
H17A−0.3085−0.17360.41530.083*
H17B−0.4775−0.13930.47560.083*
H17C−0.3781−0.28560.55120.083*
C18−0.2656 (3)0.3918 (2)0.74252 (19)0.0718 (6)
H18A−0.17630.42630.68070.108*
H18B−0.30270.46630.78660.108*
H18C−0.34490.37870.69520.108*
C190.5210 (2)0.2757 (2)1.11183 (18)0.0582 (5)
H19A0.51350.17011.16430.087*
H19B0.56200.32841.16150.087*
H19C0.58820.28251.03090.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0329 (5)0.0393 (5)0.0537 (6)0.0034 (4)−0.0130 (4)−0.0279 (5)
O20.0377 (6)0.0752 (8)0.0972 (9)0.0149 (6)−0.0282 (6)−0.0546 (7)
O30.0394 (6)0.0499 (6)0.0641 (7)0.0004 (5)−0.0220 (5)−0.0281 (5)
O40.0479 (6)0.0465 (6)0.0663 (7)0.0043 (5)−0.0132 (5)−0.0356 (5)
O50.0376 (5)0.0459 (6)0.0466 (5)0.0098 (4)−0.0091 (4)−0.0241 (5)
O60.0479 (6)0.0617 (7)0.0775 (8)0.0096 (5)−0.0264 (6)−0.0467 (6)
C10.0337 (7)0.0329 (7)0.0381 (6)−0.0042 (5)−0.0073 (5)−0.0154 (5)
C20.0345 (7)0.0358 (7)0.0451 (7)0.0007 (6)−0.0100 (6)−0.0178 (6)
C30.0394 (8)0.0324 (7)0.0391 (7)−0.0028 (6)−0.0032 (6)−0.0147 (6)
C40.0409 (8)0.0375 (7)0.0406 (7)−0.0085 (6)−0.0080 (6)−0.0169 (6)
C50.0341 (7)0.0367 (7)0.0384 (7)−0.0062 (6)−0.0086 (6)−0.0111 (6)
C60.0337 (7)0.0315 (7)0.0378 (7)−0.0034 (5)−0.0075 (5)−0.0117 (5)
C70.0331 (7)0.0391 (7)0.0454 (7)0.0000 (6)−0.0095 (6)−0.0167 (6)
C80.0334 (7)0.0351 (7)0.0366 (6)0.0014 (5)−0.0048 (5)−0.0155 (5)
C90.0329 (7)0.0318 (7)0.0364 (6)0.0004 (5)−0.0048 (5)−0.0148 (5)
C100.0351 (7)0.0327 (7)0.0351 (6)−0.0007 (5)−0.0075 (5)−0.0136 (5)
C110.0393 (8)0.0406 (8)0.0473 (7)0.0071 (6)−0.0112 (6)−0.0257 (6)
C120.0337 (7)0.0463 (8)0.0521 (8)0.0076 (6)−0.0135 (6)−0.0256 (7)
C130.0408 (8)0.0378 (7)0.0427 (7)0.0007 (6)−0.0137 (6)−0.0188 (6)
C140.0447 (9)0.0502 (9)0.0562 (9)0.0083 (7)−0.0116 (7)−0.0347 (7)
C150.0339 (7)0.0543 (9)0.0563 (9)0.0069 (7)−0.0111 (6)−0.0329 (7)
C160.0516 (10)0.0537 (10)0.0871 (13)0.0130 (8)−0.0179 (9)−0.0436 (9)
C170.0490 (10)0.0620 (10)0.0707 (11)−0.0037 (8)−0.0254 (8)−0.0333 (9)
C180.1032 (16)0.0453 (10)0.0648 (11)0.0232 (10)−0.0173 (11)−0.0217 (9)
C190.0463 (9)0.0770 (12)0.0683 (11)0.0066 (9)−0.0231 (8)−0.0427 (10)

Geometric parameters (Å, °)

O1—C91.3707 (15)C10—C111.3912 (19)
O1—C11.3708 (15)C10—C151.4018 (19)
O2—C71.2300 (17)C11—C121.3871 (19)
O3—C51.3517 (16)C11—H110.93
O3—C171.4212 (17)C12—C131.381 (2)
O4—C31.3616 (16)C12—H120.93
O4—C161.4150 (19)C13—C141.381 (2)
O5—C81.3707 (16)C14—C151.372 (2)
O5—C181.422 (2)C14—H140.93
O6—C131.3657 (16)C15—H150.93
O6—C191.4141 (19)C16—H16A0.96
C1—C61.3860 (18)C16—H16B0.96
C1—C21.3921 (18)C16—H16C0.96
C2—C31.3753 (18)C17—H17A0.96
C2—H20.93C17—H17B0.96
C3—C41.395 (2)C17—H17C0.96
C4—C51.377 (2)C18—H18A0.96
C4—H40.93C18—H18B0.96
C5—C61.4270 (18)C18—H18C0.96
C6—C71.4641 (19)C19—H19A0.96
C7—C81.4603 (19)C19—H19B0.96
C8—C91.3526 (18)C19—H19C0.96
C9—C101.4740 (18)
C9—O1—C1121.22 (10)C10—C11—H11118.8
C5—O3—C17117.68 (12)C13—C12—C11119.26 (13)
C3—O4—C16117.79 (11)C13—C12—H12120.4
C8—O5—C18115.26 (12)C11—C12—H12120.4
C13—O6—C19118.35 (12)O6—C13—C14115.45 (12)
O1—C1—C6122.08 (12)O6—C13—C12125.06 (13)
O1—C1—C2113.58 (11)C14—C13—C12119.50 (12)
C6—C1—C2124.33 (12)C15—C14—C13120.90 (13)
C3—C2—C1117.38 (12)C15—C14—H14119.6
C3—C2—H2121.3C13—C14—H14119.6
C1—C2—H2121.3C14—C15—C10121.25 (13)
O4—C3—C2124.15 (13)C14—C15—H15119.4
O4—C3—C4114.65 (12)C10—C15—H15119.4
C2—C3—C4121.20 (13)O4—C16—H16A109.5
C5—C4—C3120.26 (12)O4—C16—H16B109.5
C5—C4—H4119.9H16A—C16—H16B109.5
C3—C4—H4119.9O4—C16—H16C109.5
O3—C5—C4123.43 (12)H16A—C16—H16C109.5
O3—C5—C6115.93 (12)H16B—C16—H16C109.5
C4—C5—C6120.63 (12)O3—C17—H17A109.5
C1—C6—C5116.09 (12)O3—C17—H17B109.5
C1—C6—C7119.08 (12)H17A—C17—H17B109.5
C5—C6—C7124.77 (12)O3—C17—H17C109.5
O2—C7—C8120.11 (13)H17A—C17—H17C109.5
O2—C7—C6125.17 (13)H17B—C17—H17C109.5
C8—C7—C6114.71 (11)O5—C18—H18A109.5
C9—C8—O5119.91 (11)O5—C18—H18B109.5
C9—C8—C7123.11 (12)H18A—C18—H18B109.5
O5—C8—C7116.87 (11)O5—C18—H18C109.5
C8—C9—O1119.68 (11)H18A—C18—H18C109.5
C8—C9—C10129.53 (12)H18B—C18—H18C109.5
O1—C9—C10110.79 (10)O6—C19—H19A109.5
C11—C10—C15116.66 (12)O6—C19—H19B109.5
C11—C10—C9120.31 (12)H19A—C19—H19B109.5
C15—C10—C9123.02 (12)O6—C19—H19C109.5
C12—C11—C10122.43 (13)H19A—C19—H19C109.5
C12—C11—H11118.8H19B—C19—H19C109.5
C9—O1—C1—C63.33 (19)C18—O5—C8—C7−72.50 (18)
C9—O1—C1—C2−175.58 (12)O2—C7—C8—C9179.37 (14)
O1—C1—C2—C3178.92 (12)C6—C7—C8—C90.6 (2)
C6—C1—C2—C30.0 (2)O2—C7—C8—O53.1 (2)
C16—O4—C3—C23.0 (2)C6—C7—C8—O5−175.74 (11)
C16—O4—C3—C4−177.12 (14)O5—C8—C9—O1174.86 (11)
C1—C2—C3—O4−177.39 (13)C7—C8—C9—O1−1.3 (2)
C1—C2—C3—C42.8 (2)O5—C8—C9—C10−4.9 (2)
O4—C3—C4—C5177.35 (12)C7—C8—C9—C10178.90 (13)
C2—C3—C4—C5−2.8 (2)C1—O1—C9—C8−0.58 (19)
C17—O3—C5—C40.4 (2)C1—O1—C9—C10179.24 (11)
C17—O3—C5—C6−179.72 (13)C8—C9—C10—C11−171.67 (14)
C3—C4—C5—O3179.81 (12)O1—C9—C10—C118.53 (18)
C3—C4—C5—C60.0 (2)C8—C9—C10—C159.3 (2)
O1—C1—C6—C5178.53 (12)O1—C9—C10—C15−170.51 (13)
C2—C1—C6—C5−2.7 (2)C15—C10—C11—C120.1 (2)
O1—C1—C6—C7−4.0 (2)C9—C10—C11—C12−178.98 (13)
C2—C1—C6—C7174.78 (13)C10—C11—C12—C130.2 (2)
O3—C5—C6—C1−177.23 (12)C19—O6—C13—C14164.09 (15)
C4—C5—C6—C12.63 (19)C19—O6—C13—C12−15.9 (2)
O3—C5—C6—C75.5 (2)C11—C12—C13—O6179.50 (14)
C4—C5—C6—C7−174.66 (13)C11—C12—C13—C14−0.4 (2)
C1—C6—C7—O2−176.71 (14)O6—C13—C14—C15−179.64 (14)
C5—C6—C7—O20.5 (2)C12—C13—C14—C150.3 (2)
C1—C6—C7—C82.05 (19)C13—C14—C15—C100.0 (3)
C5—C6—C7—C8179.26 (12)C11—C10—C15—C14−0.3 (2)
C18—O5—C8—C9111.09 (17)C9—C10—C15—C14178.81 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···O50.932.232.8690 (18)126
C17—H17B···O2i0.962.483.2674 (19)139
C17—H17B···O3i0.962.613.458 (2)148
C18—H18B···O6ii0.962.573.530 (2)173
C19—H19C···O5iii0.962.513.457 (2)170

Symmetry codes: (i) −x−1, −y, −z+1; (ii) −x, −y+1, −z+2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2932).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Aree, T., Sabphon, C. & Sawasdee, P. (2009). Acta Cryst. E65, o2693. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography