PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1466–m1467.
Published online 2009 October 31. doi:  10.1107/S1600536809043864
PMCID: PMC2971012

μ-1,1′-Bis(diphenyl­phosphino)ferrocene-κ2 P:P′-bis­{[(Z)-O-isopropyl N-(4-nitro­phen­yl)thio­carbamato-κS]gold(I)} chloro­form disolvate

Abstract

The dinuclear title mol­ecule, [Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3, has crystallographic twofold symmetry with the Fe atom (bonded to two η5-cyclo­penta­dienyl rings) situated on the rotation axis. The Au atom exists within a linear geometry defined by an S,P-donor set with a deviation from linearity [S—Au—P = 176.86 (6)°] due to the close approach of the thio­carbamate O atom [Au(...)O = 3.108 (5) Å]. The mol­ecule has a U-shaped geometry which facilitates the formation of an intra­molecular Au(...)Au inter­action [3.0231 (5) Å]. In the crystal, the presence of C—H(...)Onitro contacts leads to the formation of layers with substantial voids; these are occupied by the solvent mol­ecules of crystallization, which are held in place by C—H(...)S contacts.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see: Hall et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1466-scheme1.jpg

Experimental

Crystal data

  • [Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3
  • M r = 1665.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1466-efi2.jpg
  • a = 25.9661 (13) Å
  • b = 11.5544 (6) Å
  • c = 23.3615 (13) Å
  • β = 117.293 (1)°
  • V = 6228.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.36 mm−1
  • T = 223 K
  • 0.36 × 0.07 × 0.04 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.572, T max = 1
  • 21839 measured reflections
  • 7148 independent reflections
  • 4988 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.104
  • S = 0.97
  • 7148 reflections
  • 357 parameters
  • H-atom parameters constrained
  • Δρmax = 2.08 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043864/hb5168sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043864/hb5168Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

supplementary crystallographic information

Comment

The dinuclear title compound, dppf{Au[SC(O-iPr)NC6H4NO2-p]}2, was investigated as a part of systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008). Crystals were isolated as the di-chloroform solvate, (I), and are isomorphous with the methoxy analogue (Ho et al., 2006). The dinuclear molecule has crystallographic twofold symmetry with the Fe atom lying on the axis; the asymmetric unit comprises half a dinuclear molecule and one chloroform molecule. The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1, and the deviation from linearity is ascribed to the close approach of the O1 atom, Au···O = 3.108 (5) Å. The anion, with a Z configuration about the C1═N1 bond, shows the expected characteristics. Overall, the molecule has a U-shaped configuration which allows for the formation of an aurophilic interaction, Au···Aui = 3.0231 (5) Å; (i): -x, y, 1/2 - z.

In the crystal structure of (I), supramolecular layers are formed in the bc plane that are mediated by C—H···O interactions, Table 2 and Fig. 2. The resulting framework has solvent accessible voids and these are occupied by the chloroform molecules which are connected via C—H···S contacts, Table 2. Layer thus formed stack along the a direction.

Experimental

The unsolvated compound was prepared following the standard literature procedure from the reaction of dppf(AuCl)2 and i-PrOC(═S)N(H)C6H4NO2-4 in the presence of base (Hall et al., 1993); m. pt. 409–410 K. Analysis for C54H50Au2FeN4O6P2S2: found (calculated): C: 45.64 (45.45); H: 3.49 (3.53). IR (cm-1): ν(C—S) 1100 s, 899m; ν(C—N) 1585 s; ν(C—O) 1153 s. 31P{1H} NMR: δ 32.0 p.p.m. Orange crystals of the di-chloroform solvate (I) were obtained from the layering of ethanol on a chloroform solution of the characterized product.

Refinement

The H atoms were geometrically placed (C—H = 0.94–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 2.08 and 0.74 e Å-3, respectively, were located 0.83 Å and 0.74 Å from the Au atom.

Figures

Fig. 1.
Molecular structure of the dinuclear complex in (I) showing displacement ellipsoids at the 35% probability level. The molecule has twofold symmetry and unlabelled atoms are generated by the symmetry operation -x, y, 1/2 - z.
Fig. 2.
Supramolecular layer formation in (I) mediated by C—H···O contacts (blue dashed lines). The chloroform molecules are connected via C—H···S contacts (orange dashed lines). Colour code: Au, ...

Crystal data

[Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3F(000) = 3248
Mr = 1665.56Dx = 1.776 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 3297 reflections
a = 25.9661 (13) Åθ = 4.4–23.2°
b = 11.5544 (6) ŵ = 5.36 mm1
c = 23.3615 (13) ÅT = 223 K
β = 117.293 (1)°Needle, orange
V = 6228.7 (6) Å30.36 × 0.07 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer7148 independent reflections
Radiation source: fine-focus sealed tube4988 reflections with I > 2σ(I)
graphiteRint = 0.056
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −31→33
Tmin = 0.572, Tmax = 1k = −15→15
21839 measured reflectionsl = −30→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3
7148 reflections(Δ/σ)max = 0.001
357 parametersΔρmax = 2.08 e Å3
0 restraintsΔρmin = −0.74 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au0.038384 (9)0.040380 (18)0.217132 (11)0.03822 (9)
Fe0.00000.36727 (10)0.25000.0348 (3)
Cl10.09462 (11)0.1755 (2)0.62226 (16)0.1115 (10)
Cl20.09451 (11)0.4042 (2)0.66861 (19)0.1263 (13)
Cl3−0.00491 (9)0.2607 (2)0.63203 (13)0.0870 (7)
S10.08961 (7)−0.09108 (14)0.29813 (8)0.0475 (4)
P1−0.00697 (6)0.17293 (13)0.13880 (7)0.0354 (3)
O10.17098 (19)0.0531 (4)0.3072 (2)0.0568 (13)
O20.1974 (2)−0.6234 (5)0.4520 (3)0.0835 (19)
O30.1523 (4)−0.5385 (5)0.4984 (3)0.097 (2)
N10.2054 (2)−0.1139 (5)0.3638 (3)0.0548 (15)
N20.1784 (3)−0.5363 (5)0.4654 (3)0.0637 (18)
C10.1632 (3)−0.0518 (5)0.3277 (3)0.0458 (16)
C20.1963 (2)−0.2195 (6)0.3880 (3)0.0480 (17)
C30.2107 (3)−0.3236 (6)0.3689 (4)0.0560 (18)
H30.2246−0.32330.33810.067*
C40.2049 (3)−0.4253 (6)0.3942 (4)0.0542 (19)
H40.2147−0.49510.38100.065*
C50.1849 (3)−0.4263 (6)0.4384 (3)0.0509 (17)
C60.1698 (3)−0.3254 (6)0.4587 (3)0.0588 (19)
H60.1557−0.32750.48930.071*
C70.1757 (3)−0.2224 (6)0.4334 (3)0.0556 (19)
H70.1658−0.15300.44680.067*
C80.2304 (3)0.0878 (8)0.3263 (5)0.075 (3)
H80.25690.05090.36780.089*
C90.2330 (4)0.2145 (8)0.3331 (6)0.113 (4)
H9A0.22540.23640.36860.170*
H9B0.20420.24930.29360.170*
H9C0.27130.24140.34150.170*
C100.2436 (4)0.0462 (9)0.2737 (6)0.107 (4)
H10A0.2424−0.03770.27230.160*
H10B0.28190.07240.28200.160*
H10C0.21500.07690.23270.160*
C11−0.0392 (2)0.2915 (5)0.1610 (3)0.0340 (13)
C12−0.0298 (2)0.4126 (5)0.1557 (3)0.0378 (14)
H12−0.00750.44460.13730.045*
C13−0.0598 (3)0.4751 (5)0.1828 (3)0.0445 (16)
H13−0.06100.55610.18550.053*
C14−0.0877 (3)0.3958 (5)0.2052 (3)0.0445 (15)
H14−0.11040.41490.22560.053*
C15−0.0756 (2)0.2828 (5)0.1919 (3)0.0354 (13)
H15−0.08910.21370.20160.042*
C16−0.0634 (2)0.1105 (5)0.0653 (3)0.0342 (13)
C17−0.0487 (3)0.0138 (5)0.0404 (3)0.0483 (17)
H17−0.0105−0.01420.06060.058*
C18−0.0892 (3)−0.0405 (6)−0.0132 (4)0.0547 (18)
H18−0.0791−0.1059−0.02980.066*
C19−0.1452 (3)0.0012 (6)−0.0428 (3)0.0529 (18)
H19−0.1732−0.0353−0.08000.063*
C20−0.1603 (3)0.0951 (6)−0.0183 (3)0.0569 (19)
H20−0.19870.1221−0.03830.068*
C21−0.1191 (3)0.1504 (5)0.0357 (3)0.0499 (17)
H21−0.12940.21560.05220.060*
C220.0426 (3)0.2447 (5)0.1154 (3)0.0423 (15)
C230.1015 (3)0.2386 (6)0.1572 (3)0.0490 (16)
H230.11500.19440.19510.059*
C240.1405 (3)0.2984 (7)0.1426 (4)0.068 (2)
H240.18040.29350.17050.081*
C250.1213 (4)0.3646 (6)0.0878 (4)0.070 (2)
H250.14770.40710.07900.084*
C260.0623 (4)0.3680 (6)0.0455 (4)0.064 (2)
H260.04890.41080.00710.077*
C270.0234 (3)0.3085 (5)0.0599 (3)0.0525 (17)
H27−0.01650.31190.03140.063*
C280.0705 (3)0.2630 (6)0.6651 (4)0.062 (2)
H280.08670.23280.70960.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.03377 (13)0.03382 (12)0.04130 (14)0.00501 (10)0.01225 (10)0.00307 (11)
Fe0.0327 (6)0.0341 (6)0.0337 (6)0.0000.0118 (5)0.000
Cl10.0976 (18)0.1016 (18)0.161 (3)−0.0139 (15)0.0819 (19)−0.0543 (19)
Cl20.0878 (17)0.0519 (12)0.239 (4)−0.0138 (12)0.074 (2)−0.0203 (18)
Cl30.0653 (13)0.0782 (14)0.121 (2)−0.0069 (11)0.0461 (14)−0.0200 (14)
S10.0364 (8)0.0424 (8)0.0557 (10)0.0049 (7)0.0142 (8)0.0126 (8)
P10.0335 (8)0.0328 (7)0.0369 (8)0.0014 (6)0.0135 (7)−0.0007 (6)
O10.037 (2)0.048 (3)0.072 (3)−0.003 (2)0.014 (2)0.017 (2)
O20.073 (4)0.041 (3)0.136 (6)−0.006 (3)0.047 (4)0.004 (3)
O30.152 (7)0.061 (4)0.103 (5)−0.014 (4)0.079 (5)−0.004 (3)
N10.030 (3)0.058 (3)0.068 (4)0.007 (3)0.015 (3)0.019 (3)
N20.060 (4)0.046 (4)0.075 (5)−0.010 (3)0.022 (4)0.001 (3)
C10.044 (4)0.045 (4)0.046 (4)0.000 (3)0.019 (3)0.005 (3)
C20.029 (3)0.055 (4)0.051 (4)0.005 (3)0.011 (3)0.008 (3)
C30.044 (4)0.061 (4)0.066 (5)0.008 (3)0.028 (4)0.006 (4)
C40.039 (4)0.046 (4)0.076 (5)0.005 (3)0.024 (4)−0.001 (4)
C50.043 (4)0.050 (4)0.053 (4)−0.003 (3)0.015 (3)0.003 (3)
C60.077 (5)0.052 (4)0.051 (4)−0.006 (4)0.032 (4)0.002 (3)
C70.064 (5)0.042 (4)0.055 (4)0.011 (3)0.023 (4)0.002 (3)
C80.035 (4)0.079 (6)0.091 (6)0.000 (4)0.013 (4)0.030 (5)
C90.065 (6)0.091 (7)0.146 (10)−0.037 (5)0.016 (6)−0.003 (7)
C100.066 (6)0.108 (8)0.159 (11)0.005 (5)0.063 (7)0.021 (8)
C110.035 (3)0.031 (3)0.028 (3)0.003 (2)0.008 (3)0.001 (2)
C120.038 (3)0.034 (3)0.035 (3)−0.001 (2)0.011 (3)0.003 (3)
C130.044 (3)0.037 (3)0.041 (3)0.007 (3)0.010 (3)0.003 (3)
C140.035 (3)0.051 (4)0.042 (4)0.007 (3)0.013 (3)−0.002 (3)
C150.023 (3)0.043 (3)0.035 (3)−0.002 (2)0.010 (2)0.003 (3)
C160.035 (3)0.032 (3)0.030 (3)0.002 (2)0.011 (2)0.005 (2)
C170.043 (4)0.046 (4)0.050 (4)0.009 (3)0.017 (3)−0.004 (3)
C180.060 (4)0.045 (4)0.062 (4)−0.001 (3)0.031 (4)−0.013 (3)
C190.043 (4)0.061 (4)0.047 (4)−0.014 (3)0.015 (3)−0.015 (3)
C200.036 (3)0.062 (4)0.056 (4)0.005 (3)0.006 (3)−0.009 (4)
C210.048 (4)0.039 (3)0.057 (4)0.007 (3)0.019 (3)−0.008 (3)
C220.052 (4)0.034 (3)0.051 (4)0.000 (3)0.033 (3)−0.006 (3)
C230.044 (4)0.048 (4)0.057 (4)−0.007 (3)0.026 (3)−0.009 (3)
C240.055 (4)0.082 (6)0.075 (6)−0.013 (4)0.037 (4)−0.016 (5)
C250.097 (6)0.052 (4)0.097 (7)−0.032 (4)0.076 (6)−0.029 (5)
C260.103 (7)0.046 (4)0.068 (5)−0.005 (4)0.060 (5)−0.003 (4)
C270.076 (5)0.042 (4)0.053 (4)−0.001 (3)0.041 (4)−0.006 (3)
C280.054 (4)0.047 (4)0.084 (6)0.005 (3)0.030 (4)0.000 (4)

Geometric parameters (Å, °)

Au—S12.3127 (16)C8—H80.9900
Au—P12.2594 (15)C9—H9A0.9700
Au—Aui3.0231 (5)C9—H9B0.9700
Fe—C12i2.041 (6)C9—H9C0.9700
Fe—C122.041 (6)C10—H10A0.9700
Fe—C112.045 (5)C10—H10B0.9700
Fe—C11i2.045 (5)C10—H10C0.9700
Fe—C13i2.047 (6)C11—C151.431 (8)
Fe—C132.047 (6)C11—C121.436 (8)
Fe—C14i2.050 (6)C12—C131.407 (9)
Fe—C142.050 (6)C12—H120.9400
Fe—C152.051 (5)C13—C141.409 (9)
Fe—C15i2.051 (5)C13—H130.9400
Cl1—C281.729 (8)C14—C151.411 (8)
Cl2—C281.736 (7)C14—H140.9400
Cl3—C281.744 (7)C15—H150.9400
S1—C11.767 (6)C16—C211.365 (8)
P1—C111.802 (6)C16—C171.392 (8)
P1—C221.812 (6)C17—C181.363 (9)
P1—C161.818 (5)C17—H170.9400
O1—C11.353 (7)C18—C191.380 (9)
O1—C81.453 (8)C18—H180.9400
O2—N21.223 (8)C19—C201.363 (10)
O3—N21.239 (9)C19—H190.9400
N1—C11.257 (7)C20—C211.382 (8)
N1—C21.410 (8)C20—H200.9400
N2—C51.463 (9)C21—H210.9400
C2—C71.390 (10)C22—C271.372 (9)
C2—C31.392 (9)C22—C231.389 (8)
C3—C41.355 (9)C23—C241.390 (10)
C3—H30.9400C23—H230.9400
C4—C51.353 (10)C24—C251.373 (11)
C4—H40.9400C24—H240.9400
C5—C61.381 (10)C25—C261.391 (11)
C6—C71.369 (9)C25—H250.9400
C6—H60.9400C26—C271.386 (9)
C7—H70.9400C26—H260.9400
C8—C91.470 (12)C27—H270.9400
C8—C101.498 (14)C28—H280.9900
P1—Au—S1176.86 (6)C10—C8—H8110.3
P1—Au—Aui101.03 (4)C8—C9—H9A109.5
S1—Au—Aui81.38 (5)C8—C9—H9B109.5
C12i—Fe—C12150.2 (3)H9A—C9—H9B109.5
C12i—Fe—C11166.6 (2)C8—C9—H9C109.5
C12—Fe—C1141.1 (2)H9A—C9—H9C109.5
C12i—Fe—C11i41.1 (2)H9B—C9—H9C109.5
C12—Fe—C11i166.6 (2)C8—C10—H10A109.5
C11—Fe—C11i129.3 (3)C8—C10—H10B109.5
C12i—Fe—C13i40.3 (3)H10A—C10—H10B109.5
C12—Fe—C13i116.8 (2)C8—C10—H10C109.5
C11—Fe—C13i152.7 (3)H10A—C10—H10C109.5
C11i—Fe—C13i68.4 (2)H10B—C10—H10C109.5
C12i—Fe—C13116.8 (2)C15—C11—C12106.9 (5)
C12—Fe—C1340.3 (2)C15—C11—P1126.4 (4)
C11—Fe—C1368.4 (2)C12—C11—P1126.6 (5)
C11i—Fe—C13152.7 (3)C15—C11—Fe69.8 (3)
C13i—Fe—C13105.0 (3)C12—C11—Fe69.3 (3)
C12i—Fe—C14i68.0 (3)P1—C11—Fe122.5 (3)
C12—Fe—C14i107.0 (3)C13—C12—C11108.0 (6)
C11—Fe—C14i120.4 (2)C13—C12—Fe70.1 (4)
C11i—Fe—C14i68.4 (2)C11—C12—Fe69.6 (3)
C13i—Fe—C14i40.2 (3)C13—C12—H12126.0
C13—Fe—C14i124.6 (3)C11—C12—H12126.0
C12i—Fe—C14107.0 (3)Fe—C12—H12125.9
C12—Fe—C1468.0 (3)C12—C13—C14108.6 (5)
C11—Fe—C1468.4 (2)C12—C13—Fe69.6 (3)
C11i—Fe—C14120.4 (2)C14—C13—Fe70.0 (3)
C13i—Fe—C14124.6 (3)C12—C13—H13125.7
C13—Fe—C1440.2 (3)C14—C13—H13125.7
C14i—Fe—C14161.5 (4)Fe—C13—H13126.3
C12i—Fe—C15127.7 (2)C13—C14—C15108.4 (6)
C12—Fe—C1568.5 (2)C13—C14—Fe69.8 (3)
C11—Fe—C1540.9 (2)C15—C14—Fe69.9 (3)
C11i—Fe—C15110.4 (2)C13—C14—H14125.8
C13i—Fe—C15163.0 (3)C15—C14—H14125.8
C13—Fe—C1567.8 (2)Fe—C14—H14126.1
C14i—Fe—C15156.4 (3)C14—C15—C11108.1 (5)
C14—Fe—C1540.2 (2)C14—C15—Fe69.8 (3)
C12i—Fe—C15i68.5 (2)C11—C15—Fe69.4 (3)
C12—Fe—C15i127.7 (2)C14—C15—H15125.9
C11—Fe—C15i110.4 (2)C11—C15—H15125.9
C11i—Fe—C15i40.9 (2)Fe—C15—H15126.4
C13i—Fe—C15i67.8 (2)C21—C16—C17119.2 (5)
C13—Fe—C15i163.0 (3)C21—C16—P1123.5 (5)
C14i—Fe—C15i40.2 (2)C17—C16—P1117.2 (4)
C14—Fe—C15i156.4 (3)C18—C17—C16120.6 (6)
C15—Fe—C15i123.1 (3)C18—C17—H17119.7
C1—S1—Au105.3 (2)C16—C17—H17119.7
C11—P1—C22103.1 (3)C17—C18—C19119.4 (6)
C11—P1—C16107.1 (3)C17—C18—H18120.3
C22—P1—C16105.8 (3)C19—C18—H18120.3
C11—P1—Au114.88 (19)C20—C19—C18120.4 (6)
C22—P1—Au112.1 (2)C20—C19—H19119.8
C16—P1—Au113.01 (18)C18—C19—H19119.8
C1—O1—C8116.6 (5)C19—C20—C21120.0 (6)
C1—N1—C2120.5 (5)C19—C20—H20120.0
O2—N2—O3122.9 (7)C21—C20—H20120.0
O2—N2—C5117.7 (8)C16—C21—C20120.2 (6)
O3—N2—C5119.3 (7)C16—C21—H21119.9
N1—C1—O1121.5 (6)C20—C21—H21119.9
N1—C1—S1124.8 (5)C27—C22—C23119.8 (6)
O1—C1—S1113.7 (4)C27—C22—P1122.0 (5)
C7—C2—C3118.6 (6)C23—C22—P1118.1 (5)
C7—C2—N1121.4 (6)C22—C23—C24119.6 (7)
C3—C2—N1120.0 (7)C22—C23—H23120.2
C4—C3—C2120.5 (7)C24—C23—H23120.2
C4—C3—H3119.7C25—C24—C23120.7 (7)
C2—C3—H3119.7C25—C24—H24119.6
C5—C4—C3120.0 (7)C23—C24—H24119.6
C5—C4—H4120.0C24—C25—C26119.3 (7)
C3—C4—H4120.0C24—C25—H25120.3
C4—C5—C6121.6 (7)C26—C25—H25120.3
C4—C5—N2119.8 (7)C27—C26—C25120.0 (7)
C6—C5—N2118.6 (7)C27—C26—H26120.0
C7—C6—C5118.7 (7)C25—C26—H26120.0
C7—C6—H6120.7C22—C27—C26120.5 (7)
C5—C6—H6120.7C22—C27—H27119.8
C6—C7—C2120.6 (7)C26—C27—H27119.8
C6—C7—H7119.7Cl1—C28—Cl2111.1 (5)
C2—C7—H7119.7Cl1—C28—Cl3111.5 (4)
O1—C8—C9107.3 (7)Cl2—C28—Cl3109.9 (4)
O1—C8—C10105.6 (7)Cl1—C28—H28108.1
C9—C8—C10113.0 (9)Cl2—C28—H28108.1
O1—C8—H8110.3Cl3—C28—H28108.1
C9—C8—H8110.3
Aui—Au—S1—C1−136.1 (2)C11—Fe—C13—C12−38.2 (3)
Aui—Au—P1—C1135.1 (2)C11i—Fe—C13—C12−174.3 (4)
Aui—Au—P1—C22152.3 (2)C13i—Fe—C13—C12113.9 (4)
Aui—Au—P1—C16−88.2 (2)C14i—Fe—C13—C1274.6 (4)
C2—N1—C1—O1175.8 (6)C14—Fe—C13—C12−119.8 (5)
C2—N1—C1—S1−5.1 (10)C15—Fe—C13—C12−82.4 (4)
C8—O1—C1—N12.9 (10)C15i—Fe—C13—C1251.0 (9)
C8—O1—C1—S1−176.2 (6)C12i—Fe—C13—C14−84.9 (4)
Au—S1—C1—N1−166.5 (6)C12—Fe—C13—C14119.8 (5)
Au—S1—C1—O112.6 (5)C11—Fe—C13—C1481.6 (4)
C1—N1—C2—C7−69.1 (9)C11i—Fe—C13—C14−54.4 (6)
C1—N1—C2—C3114.0 (8)C13i—Fe—C13—C14−126.3 (4)
C7—C2—C3—C4−0.2 (10)C14i—Fe—C13—C14−165.5 (3)
N1—C2—C3—C4176.8 (6)C15—Fe—C13—C1437.4 (4)
C2—C3—C4—C50.0 (10)C15i—Fe—C13—C14170.9 (7)
C3—C4—C5—C60.3 (11)C12—C13—C14—C15−0.4 (7)
C3—C4—C5—N2179.7 (6)Fe—C13—C14—C15−59.5 (4)
O2—N2—C5—C47.8 (10)C12—C13—C14—Fe59.1 (4)
O3—N2—C5—C4−169.4 (7)C12i—Fe—C14—C13111.6 (4)
O2—N2—C5—C6−172.8 (7)C12—Fe—C14—C13−37.2 (4)
O3—N2—C5—C610.0 (10)C11—Fe—C14—C13−81.7 (4)
C4—C5—C6—C7−0.4 (11)C11i—Fe—C14—C13154.4 (4)
N2—C5—C6—C7−179.8 (6)C13i—Fe—C14—C1370.9 (6)
C5—C6—C7—C20.2 (11)C14i—Fe—C14—C1340.4 (3)
C3—C2—C7—C60.1 (10)C15—Fe—C14—C13−119.5 (5)
N1—C2—C7—C6−176.8 (6)C15i—Fe—C14—C13−173.3 (5)
C1—O1—C8—C9−148.5 (8)C12i—Fe—C14—C15−128.9 (4)
C1—O1—C8—C1090.7 (8)C12—Fe—C14—C1582.3 (4)
C22—P1—C11—C15−170.5 (5)C11—Fe—C14—C1537.8 (4)
C16—P1—C11—C1578.1 (5)C11i—Fe—C14—C15−86.1 (4)
Au—P1—C11—C15−48.3 (5)C13i—Fe—C14—C15−169.6 (4)
C22—P1—C11—C124.3 (6)C13—Fe—C14—C15119.5 (5)
C16—P1—C11—C12−107.1 (5)C14i—Fe—C14—C15159.9 (4)
Au—P1—C11—C12126.6 (4)C15i—Fe—C14—C15−53.8 (9)
C22—P1—C11—Fe−82.8 (4)C13—C14—C15—C110.4 (6)
C16—P1—C11—Fe165.8 (3)Fe—C14—C15—C11−59.0 (4)
Au—P1—C11—Fe39.4 (4)C13—C14—C15—Fe59.4 (4)
C12i—Fe—C11—C1534.7 (11)C12—C11—C15—C14−0.3 (6)
C12—Fe—C11—C15−118.1 (5)P1—C11—C15—C14175.4 (4)
C11i—Fe—C11—C1575.1 (3)Fe—C11—C15—C1459.3 (4)
C13i—Fe—C11—C15−161.5 (5)C12—C11—C15—Fe−59.6 (4)
C13—Fe—C11—C15−80.7 (4)P1—C11—C15—Fe116.1 (4)
C14i—Fe—C11—C15160.9 (3)C12i—Fe—C15—C1470.1 (5)
C14—Fe—C11—C15−37.2 (3)C12—Fe—C15—C14−80.9 (4)
C15i—Fe—C11—C15117.5 (4)C11—Fe—C15—C14−119.5 (5)
C12i—Fe—C11—C12152.8 (8)C11i—Fe—C15—C14113.4 (4)
C11i—Fe—C11—C12−166.8 (4)C13i—Fe—C15—C1430.7 (10)
C13i—Fe—C11—C12−43.4 (6)C13—Fe—C15—C14−37.4 (4)
C13—Fe—C11—C1237.4 (4)C14i—Fe—C15—C14−164.2 (4)
C14i—Fe—C11—C12−81.0 (4)C15i—Fe—C15—C14157.3 (4)
C14—Fe—C11—C1280.9 (4)C12i—Fe—C15—C11−170.4 (3)
C15—Fe—C11—C12118.1 (5)C12—Fe—C15—C1138.6 (3)
C15i—Fe—C11—C12−124.4 (4)C11i—Fe—C15—C11−127.1 (4)
C12i—Fe—C11—P1−86.2 (11)C13i—Fe—C15—C11150.2 (8)
C12—Fe—C11—P1120.9 (5)C13—Fe—C15—C1182.1 (4)
C11i—Fe—C11—P1−45.9 (3)C14i—Fe—C15—C11−44.7 (7)
C13i—Fe—C11—P177.5 (6)C14—Fe—C15—C11119.5 (5)
C13—Fe—C11—P1158.4 (4)C15i—Fe—C15—C11−83.2 (3)
C14i—Fe—C11—P140.0 (5)C11—P1—C16—C21−0.6 (6)
C14—Fe—C11—P1−158.2 (4)C22—P1—C16—C21−110.1 (6)
C15—Fe—C11—P1−121.0 (5)Au—P1—C16—C21126.9 (5)
C15i—Fe—C11—P1−3.5 (4)C11—P1—C16—C17−177.7 (5)
C15—C11—C12—C130.1 (6)C22—P1—C16—C1772.8 (5)
P1—C11—C12—C13−175.6 (4)Au—P1—C16—C17−50.2 (5)
Fe—C11—C12—C13−59.8 (4)C21—C16—C17—C180.2 (10)
C15—C11—C12—Fe59.9 (4)P1—C16—C17—C18177.4 (6)
P1—C11—C12—Fe−115.8 (4)C16—C17—C18—C190.2 (11)
C12i—Fe—C12—C13−48.7 (3)C17—C18—C19—C20−0.9 (12)
C11—Fe—C12—C13119.0 (5)C18—C19—C20—C211.2 (12)
C11i—Fe—C12—C13168.6 (9)C17—C16—C21—C200.1 (10)
C13i—Fe—C12—C13−81.6 (5)P1—C16—C21—C20−176.9 (6)
C14i—Fe—C12—C13−123.9 (4)C19—C20—C21—C16−0.8 (11)
C14—Fe—C12—C1337.2 (4)C11—P1—C22—C27−70.8 (6)
C15—Fe—C12—C1380.7 (4)C16—P1—C22—C2741.6 (6)
C15i—Fe—C12—C13−163.3 (4)Au—P1—C22—C27165.1 (5)
C12i—Fe—C12—C11−167.7 (4)C11—P1—C22—C23106.0 (5)
C11i—Fe—C12—C1149.5 (13)C16—P1—C22—C23−141.7 (5)
C13i—Fe—C12—C11159.4 (3)Au—P1—C22—C23−18.1 (5)
C13—Fe—C12—C11−119.0 (5)C27—C22—C23—C240.7 (10)
C14i—Fe—C12—C11117.1 (4)P1—C22—C23—C24−176.2 (5)
C14—Fe—C12—C11−81.8 (4)C22—C23—C24—C250.9 (11)
C15—Fe—C12—C11−38.4 (3)C23—C24—C25—C26−2.4 (11)
C15i—Fe—C12—C1177.6 (4)C24—C25—C26—C272.3 (11)
C11—C12—C13—C140.2 (6)C23—C22—C27—C26−0.7 (9)
Fe—C12—C13—C14−59.3 (4)P1—C22—C27—C26176.0 (5)
C11—C12—C13—Fe59.5 (4)C25—C26—C27—C22−0.8 (10)
C12i—Fe—C13—C12155.3 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C21—H21···O2ii0.942.543.403 (9)154
C25—H25···O3iii0.942.463.254 (12)142
C28—H28···S1iv0.992.613.527 (8)154

Symmetry codes: (ii) −x, y+1, −z+1/2; (iii) x, −y, z−1/2; (iv) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5168).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem.46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem.45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography