PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2956–o2957.
Published online 2009 October 31. doi:  10.1107/S1600536809044973
PMCID: PMC2971011

3-Benzyl-7-meth­oxy-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-pyrrolo[3,4-b]quinoline

Abstract

In the title compound, C32H32N2O3S, the pyrrolidine ring adopts an envelope conformation with the methine C atom nearest to the phenyl ring as the flap atom. The tetra­hydro­pyridine ring has a half-chair conformation. The two rings are trans-fused. The phenyl ring bound to the tetra­hydro­pyridine is oriented almost perpendicular [dihedral angle = 86.35 (10)°] to the fused benzene ring. The dihedral angle between the benzyl­phenyl ring and the sulfonyl-bound phenyl ring is 69.43 (10)°. A very weak N—H(...)π inter­action is observed in the mol­ecular structure. In the crystal, mol­ecules translated one unit along the b axis are linked into C(10) chains by C—H(...)O hydrogen bonds; adjacent chains are linked via C—H(...)π inter­actions, forming a two-dimensional network parallel to the bc plane.

Related literature

For biological activity of pyrroloquinoline derivatives, see: Ryu et al. (2009 [triangle]); Tsuji et al. (1995 [triangle]); Ferlin et al. (2001 [triangle]). For related structures, see: Sudha et al. (2007 [triangle], 2008a [triangle],b [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For asymmetry parameters, see: Duax et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2956-scheme1.jpg

Experimental

Crystal data

  • C32H32N2O3S
  • M r = 524.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2956-efi1.jpg
  • a = 21.5063 (9) Å
  • b = 11.6188 (5) Å
  • c = 10.7616 (4) Å
  • β = 98.219 (2)°
  • V = 2661.46 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 100 K
  • 0.32 × 0.30 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.636, T max = 0.987
  • 28181 measured reflections
  • 6088 independent reflections
  • 4661 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.155
  • S = 1.02
  • 6088 reflections
  • 349 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044973/lh2940sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044973/lh2940Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Pyrroloquinoline compounds exhibit antifungal (Ryu et al., 2009), antibacterial (Tsuji et al., 1995) and antiproliferative (Ferlin et al., 2001) activities. We report here the crystal structure of the title compound, a pyrrolo[3,4-b]quinoline derivative.

The pyrrolidine ring adopts an envelope conformation with C2 as the flap atom. Atom C2 deviates by 0.663 (3) Å from the plane passing through the other four atoms of the ring (r.m.s. deviation 0.020 Å). The asymmetry parameter (Duax et al., 1976) ΔCs[C2] = 5.4 (2)° and the puckering parameters (Cremer & Pople, 1975) q2 = 0.439 (2) Å and [var phi] = 78.2 (3)°. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a half-chair conformation with an asymmetry parameter ΔC2[C2—C10] of 7.6 (2)°. The phenyl group attached to the tetrahydropyridine ring is also in a biaxial position. The dihedral angle between the C4—C9 and C19—C24 rings is 86.35 (10)° and that between the C12—C17 and C26—C31 rings is 69.43 (10)°. A very weak N—H···π interaction (Table 1) is observed in the molecular structure. Bond lengths and angles are comparable with those observed in related structures (Sudha et al., 2007,2008a,b).

In the crystal structure, molecules translated one unit along the b axis are linked into C(10) chains by C—H···O hydrogen bonds. Glide-related molecules in adjacent chains are linked via C—H···π interactions involving the C4—C9 ring, forming a two-dimensional network parallel to the bc plane (Fig. 2).

Experimental

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)-3-phenyl propanal (1 mmol) and p-methoxy aniline (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 1 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed on silica gel using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement

The N-bound H atom was located in a difference map and refined freely [N—H = 0.88 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for methyl groups. Reflection 100 was partially obscured by the beam stop and was omitted.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dotted line indicates an N—H···π interaction.
Fig. 2.
Crystal packing of the title compound. C—H···O hydrogen bonds and C—H···π interactions are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions ...

Crystal data

C32H32N2O3SF(000) = 1112
Mr = 524.66Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6305 reflections
a = 21.5063 (9) Åθ = 2.6–28.5°
b = 11.6188 (5) ŵ = 0.16 mm1
c = 10.7616 (4) ÅT = 100 K
β = 98.219 (2)°Plate, colourless
V = 2661.46 (19) Å30.32 × 0.30 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6088 independent reflections
Radiation source: fine-focus sealed tube4661 reflections with I > 2σ(I)
graphiteRint = 0.057
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −23→27
Tmin = 0.636, Tmax = 0.987k = −15→14
28181 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0891P)2 + 0.9992P] where P = (Fo2 + 2Fc2)/3
6088 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.36811 (2)0.64135 (4)−0.09053 (5)0.02080 (15)
O10.39510 (7)0.60291 (13)−0.19725 (13)0.0264 (3)
O20.36734 (7)0.76149 (12)−0.06064 (14)0.0266 (3)
O30.07988 (7)0.14332 (12)0.25445 (14)0.0235 (3)
N10.29441 (8)0.59952 (14)−0.11262 (15)0.0197 (4)
N20.18416 (8)0.55576 (14)0.11176 (16)0.0202 (4)
H1N20.1626 (11)0.619 (2)0.122 (2)0.024 (6)*
C10.28306 (10)0.47333 (16)−0.12239 (18)0.0195 (4)
H1A0.32220.4312−0.11940.023*
H1B0.25570.4539−0.19910.023*
C20.25163 (9)0.44865 (15)−0.00752 (17)0.0172 (4)
H20.28340.45300.06730.021*
C30.21612 (9)0.33569 (15)−0.00428 (17)0.0169 (4)
H30.18990.3268−0.08600.020*
C40.17183 (9)0.34490 (16)0.09480 (17)0.0176 (4)
C50.14457 (9)0.24516 (16)0.13452 (18)0.0182 (4)
H50.15460.17470.10160.022*
C60.10267 (9)0.24795 (16)0.22227 (18)0.0194 (4)
C70.08772 (10)0.35345 (17)0.27171 (19)0.0213 (4)
H70.06020.35690.33080.026*
C80.11424 (10)0.45329 (17)0.23202 (19)0.0213 (4)
H80.10370.52360.26480.026*
C90.15627 (9)0.45154 (16)0.14423 (18)0.0181 (4)
C100.20811 (9)0.55138 (16)−0.00791 (18)0.0179 (4)
H100.17310.5435−0.07640.022*
C110.24967 (10)0.65334 (16)−0.03459 (18)0.0192 (4)
H110.27270.68280.04410.023*
C120.40517 (9)0.56541 (17)0.04217 (18)0.0206 (4)
C130.40440 (10)0.60984 (18)0.16170 (19)0.0231 (4)
H130.38780.68250.17230.028*
C140.42880 (10)0.54439 (18)0.2653 (2)0.0249 (5)
H140.42880.57440.34540.030*
C150.45327 (10)0.43488 (19)0.2518 (2)0.0251 (5)
C160.45382 (10)0.39268 (18)0.1305 (2)0.0238 (4)
H160.47020.31990.11970.029*
C170.43044 (10)0.45702 (17)0.0261 (2)0.0233 (4)
H170.43160.4281−0.05410.028*
C180.47876 (12)0.3636 (2)0.3642 (2)0.0334 (5)
H18A0.46560.39630.43820.050*
H18B0.52380.36270.37320.050*
H18C0.46310.28640.35310.050*
C190.26098 (9)0.23397 (16)0.01226 (18)0.0177 (4)
C200.30745 (10)0.22449 (17)0.11657 (19)0.0220 (4)
H200.31050.28030.17910.026*
C210.34910 (10)0.13259 (18)0.1278 (2)0.0254 (5)
H210.38000.12770.19740.030*
C220.34495 (11)0.04784 (17)0.0358 (2)0.0268 (5)
H220.3725−0.01430.04410.032*
C230.29953 (11)0.05698 (17)−0.0680 (2)0.0269 (5)
H230.29680.0013−0.13060.032*
C240.25761 (10)0.14916 (17)−0.0797 (2)0.0223 (4)
H240.22700.1540−0.14990.027*
C250.21481 (10)0.75164 (17)−0.10939 (19)0.0227 (4)
H25A0.24470.8112−0.12300.027*
H25B0.19620.7229−0.19090.027*
C260.16400 (10)0.80340 (16)−0.04408 (18)0.0202 (4)
C270.10099 (10)0.77711 (17)−0.0814 (2)0.0249 (5)
H270.09000.7246−0.14610.030*
C280.05413 (11)0.82820 (19)−0.0235 (2)0.0276 (5)
H280.01220.8108−0.05030.033*
C290.07005 (11)0.90497 (18)0.0741 (2)0.0275 (5)
H290.03880.94000.11240.033*
C300.13279 (10)0.92955 (17)0.1147 (2)0.0237 (4)
H300.14370.97970.18170.028*
C310.17939 (10)0.87961 (16)0.05583 (19)0.0213 (4)
H310.22130.89710.08320.026*
C320.03712 (10)0.14275 (18)0.3447 (2)0.0255 (5)
H32A0.02360.06530.35680.038*
H32B0.00140.18970.31500.038*
H32C0.05770.17280.42300.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0206 (3)0.0180 (3)0.0242 (3)−0.00236 (19)0.0046 (2)0.00132 (18)
O10.0265 (9)0.0282 (8)0.0259 (8)−0.0026 (6)0.0091 (6)0.0015 (6)
O20.0252 (9)0.0192 (7)0.0353 (8)−0.0044 (6)0.0042 (7)0.0022 (6)
O30.0211 (8)0.0197 (7)0.0313 (8)−0.0037 (6)0.0089 (6)−0.0016 (6)
N10.0190 (9)0.0161 (8)0.0245 (9)0.0001 (7)0.0044 (7)0.0006 (6)
N20.0250 (10)0.0124 (8)0.0243 (9)0.0029 (7)0.0075 (7)−0.0008 (6)
C10.0199 (11)0.0162 (9)0.0222 (10)0.0009 (7)0.0029 (8)−0.0006 (7)
C20.0164 (10)0.0145 (9)0.0204 (9)0.0006 (7)0.0014 (8)−0.0007 (7)
C30.0156 (10)0.0159 (9)0.0189 (9)0.0004 (7)0.0015 (7)−0.0002 (7)
C40.0150 (10)0.0182 (9)0.0188 (9)0.0020 (7)−0.0007 (7)−0.0015 (7)
C50.0161 (10)0.0155 (9)0.0223 (10)0.0012 (7)0.0008 (8)−0.0015 (7)
C60.0154 (10)0.0179 (9)0.0242 (10)−0.0018 (7)0.0007 (8)0.0005 (7)
C70.0158 (10)0.0246 (10)0.0245 (10)0.0012 (8)0.0056 (8)−0.0012 (8)
C80.0189 (11)0.0180 (10)0.0270 (10)0.0039 (8)0.0030 (8)−0.0035 (8)
C90.0144 (10)0.0169 (9)0.0222 (10)0.0002 (7)−0.0009 (8)−0.0010 (7)
C100.0182 (10)0.0163 (9)0.0190 (9)0.0006 (7)0.0017 (8)−0.0003 (7)
C110.0196 (11)0.0159 (9)0.0224 (10)0.0010 (7)0.0038 (8)−0.0009 (7)
C120.0152 (10)0.0221 (10)0.0248 (10)−0.0020 (8)0.0038 (8)0.0008 (8)
C130.0208 (11)0.0205 (10)0.0282 (11)−0.0011 (8)0.0045 (8)−0.0022 (8)
C140.0212 (11)0.0296 (11)0.0239 (10)−0.0007 (9)0.0035 (8)−0.0036 (8)
C150.0151 (11)0.0296 (11)0.0301 (11)−0.0011 (8)0.0022 (8)0.0031 (9)
C160.0151 (10)0.0226 (10)0.0336 (11)0.0003 (8)0.0035 (8)−0.0014 (8)
C170.0205 (11)0.0236 (10)0.0266 (11)−0.0016 (8)0.0058 (8)−0.0043 (8)
C180.0320 (14)0.0355 (13)0.0325 (12)0.0057 (10)0.0036 (10)0.0063 (10)
C190.0160 (10)0.0147 (9)0.0235 (10)−0.0002 (7)0.0068 (8)0.0028 (7)
C200.0225 (11)0.0212 (10)0.0228 (10)0.0027 (8)0.0046 (8)0.0006 (8)
C210.0212 (11)0.0280 (11)0.0277 (11)0.0056 (9)0.0058 (9)0.0086 (8)
C220.0267 (12)0.0169 (10)0.0399 (12)0.0061 (8)0.0152 (10)0.0061 (8)
C230.0274 (12)0.0169 (10)0.0386 (12)−0.0010 (8)0.0127 (10)−0.0058 (9)
C240.0199 (11)0.0197 (10)0.0277 (11)−0.0021 (8)0.0047 (8)−0.0026 (8)
C250.0269 (12)0.0178 (10)0.0237 (10)0.0034 (8)0.0044 (9)0.0038 (8)
C260.0241 (11)0.0126 (9)0.0238 (10)0.0023 (7)0.0032 (8)0.0059 (7)
C270.0287 (12)0.0176 (9)0.0271 (11)−0.0024 (8)−0.0006 (9)0.0027 (8)
C280.0189 (11)0.0301 (11)0.0331 (12)−0.0022 (9)0.0011 (9)0.0079 (9)
C290.0248 (12)0.0253 (11)0.0342 (12)0.0049 (9)0.0099 (9)0.0075 (9)
C300.0280 (12)0.0173 (9)0.0264 (10)0.0005 (8)0.0057 (9)0.0021 (8)
C310.0193 (11)0.0158 (9)0.0282 (11)0.0005 (8)0.0015 (8)0.0038 (8)
C320.0210 (11)0.0261 (11)0.0307 (11)−0.0041 (8)0.0080 (9)0.0006 (9)

Geometric parameters (Å, °)

S1—O11.4303 (15)C14—H140.93
S1—O21.4332 (15)C15—C161.396 (3)
S1—N11.6424 (18)C15—C181.504 (3)
S1—C121.768 (2)C16—C171.383 (3)
O3—C61.374 (2)C16—H160.93
O3—C321.430 (2)C17—H170.93
N1—C11.488 (2)C18—H18A0.96
N1—C111.501 (2)C18—H18B0.96
N2—C91.417 (2)C18—H18C0.96
N2—C101.455 (2)C19—C241.391 (3)
N2—H1N20.88 (2)C19—C201.396 (3)
C1—C21.519 (3)C20—C211.388 (3)
C1—H1A0.97C20—H200.93
C1—H1B0.97C21—C221.390 (3)
C2—C101.516 (3)C21—H210.93
C2—C31.521 (3)C22—C231.379 (3)
C2—H20.98C22—H220.93
C3—C191.520 (3)C23—C241.394 (3)
C3—C41.532 (3)C23—H230.93
C3—H30.98C24—H240.93
C4—C51.393 (3)C25—C261.506 (3)
C4—C91.407 (3)C25—H25A0.97
C5—C61.396 (3)C25—H25B0.97
C5—H50.93C26—C271.391 (3)
C6—C71.392 (3)C26—C311.396 (3)
C7—C81.387 (3)C27—C281.392 (3)
C7—H70.93C27—H270.93
C8—C91.398 (3)C28—C291.383 (3)
C8—H80.93C28—H280.93
C10—C111.536 (3)C29—C301.387 (3)
C10—H100.98C29—H290.93
C11—C251.530 (3)C30—C311.387 (3)
C11—H110.98C30—H300.93
C12—C131.388 (3)C31—H310.93
C12—C171.392 (3)C32—H32A0.96
C13—C141.389 (3)C32—H32B0.96
C13—H130.93C32—H32C0.96
C14—C151.392 (3)
O1—S1—O2120.22 (9)C13—C14—C15121.46 (19)
O1—S1—N1106.58 (9)C13—C14—H14119.3
O2—S1—N1106.18 (9)C15—C14—H14119.3
O1—S1—C12107.76 (9)C14—C15—C16118.19 (19)
O2—S1—C12108.85 (9)C14—C15—C18121.25 (19)
N1—S1—C12106.47 (9)C16—C15—C18120.6 (2)
C6—O3—C32117.56 (15)C17—C16—C15121.27 (19)
C1—N1—C11109.76 (15)C17—C16—H16119.4
C1—N1—S1116.56 (13)C15—C16—H16119.4
C11—N1—S1118.58 (13)C16—C17—C12119.42 (19)
C9—N2—C10113.85 (15)C16—C17—H17120.3
C9—N2—H1N2115.6 (15)C12—C17—H17120.3
C10—N2—H1N2113.5 (15)C15—C18—H18A109.5
N1—C1—C2102.50 (15)C15—C18—H18B109.5
N1—C1—H1A111.3H18A—C18—H18B109.5
C2—C1—H1A111.3C15—C18—H18C109.5
N1—C1—H1B111.3H18A—C18—H18C109.5
C2—C1—H1B111.3H18B—C18—H18C109.5
H1A—C1—H1B109.2C24—C19—C20118.32 (18)
C10—C2—C1101.27 (15)C24—C19—C3120.00 (18)
C10—C2—C3111.56 (16)C20—C19—C3121.65 (17)
C1—C2—C3117.70 (15)C21—C20—C19120.63 (19)
C10—C2—H2108.6C21—C20—H20119.7
C1—C2—H2108.6C19—C20—H20119.7
C3—C2—H2108.6C20—C21—C22120.5 (2)
C19—C3—C2111.18 (16)C20—C21—H21119.7
C19—C3—C4114.85 (15)C22—C21—H21119.7
C2—C3—C4108.65 (15)C23—C22—C21119.24 (19)
C19—C3—H3107.3C23—C22—H22120.4
C2—C3—H3107.3C21—C22—H22120.4
C4—C3—H3107.3C22—C23—C24120.41 (19)
C5—C4—C9118.88 (18)C22—C23—H23119.8
C5—C4—C3119.10 (16)C24—C23—H23119.8
C9—C4—C3121.99 (17)C19—C24—C23120.9 (2)
C4—C5—C6121.94 (17)C19—C24—H24119.6
C4—C5—H5119.0C23—C24—H24119.6
C6—C5—H5119.0C26—C25—C11112.71 (16)
O3—C6—C7124.94 (18)C26—C25—H25A109.1
O3—C6—C5115.99 (17)C11—C25—H25A109.1
C7—C6—C5119.07 (18)C26—C25—H25B109.1
C8—C7—C6119.42 (18)C11—C25—H25B109.1
C8—C7—H7120.3H25A—C25—H25B107.8
C6—C7—H7120.3C27—C26—C31118.40 (19)
C7—C8—C9122.02 (18)C27—C26—C25121.28 (19)
C7—C8—H8119.0C31—C26—C25120.32 (19)
C9—C8—H8119.0C26—C27—C28121.0 (2)
C8—C9—C4118.68 (17)C26—C27—H27119.5
C8—C9—N2119.44 (17)C28—C27—H27119.5
C4—C9—N2121.81 (17)C29—C28—C27119.9 (2)
N2—C10—C2108.76 (15)C29—C28—H28120.0
N2—C10—C11115.32 (16)C27—C28—H28120.0
C2—C10—C11103.43 (16)C28—C29—C30119.7 (2)
N2—C10—H10109.7C28—C29—H29120.1
C2—C10—H10109.7C30—C29—H29120.1
C11—C10—H10109.7C31—C30—C29120.2 (2)
N1—C11—C25108.76 (15)C31—C30—H30119.9
N1—C11—C10102.71 (14)C29—C30—H30119.9
C25—C11—C10114.82 (17)C30—C31—C26120.7 (2)
N1—C11—H11110.1C30—C31—H31119.7
C25—C11—H11110.1C26—C31—H31119.7
C10—C11—H11110.1O3—C32—H32A109.5
C13—C12—C17120.53 (19)O3—C32—H32B109.5
C13—C12—S1119.93 (16)H32A—C32—H32B109.5
C17—C12—S1119.33 (15)O3—C32—H32C109.5
C12—C13—C14119.12 (19)H32A—C32—H32C109.5
C12—C13—H13120.4H32B—C32—H32C109.5
C14—C13—H13120.4
O1—S1—N1—C161.38 (15)N2—C10—C11—N1148.55 (16)
O2—S1—N1—C1−169.33 (13)C2—C10—C11—N129.94 (19)
C12—S1—N1—C1−53.44 (16)N2—C10—C11—C25−93.6 (2)
O1—S1—N1—C11−163.96 (13)C2—C10—C11—C25147.81 (16)
O2—S1—N1—C11−34.67 (16)O1—S1—C12—C13158.49 (16)
C12—S1—N1—C1181.22 (15)O2—S1—C12—C1326.59 (19)
C11—N1—C1—C2−23.1 (2)N1—S1—C12—C13−87.49 (18)
S1—N1—C1—C2115.35 (15)O1—S1—C12—C17−26.68 (19)
N1—C1—C2—C1040.98 (18)O2—S1—C12—C17−158.58 (16)
N1—C1—C2—C3162.85 (16)N1—S1—C12—C1787.34 (18)
C10—C2—C3—C19−173.02 (15)C17—C12—C13—C14−0.4 (3)
C1—C2—C3—C1970.6 (2)S1—C12—C13—C14174.34 (16)
C10—C2—C3—C4−45.7 (2)C12—C13—C14—C15−0.8 (3)
C1—C2—C3—C4−162.10 (16)C13—C14—C15—C161.2 (3)
C19—C3—C4—C5−40.9 (2)C13—C14—C15—C18−179.1 (2)
C2—C3—C4—C5−166.12 (17)C14—C15—C16—C17−0.4 (3)
C19—C3—C4—C9141.09 (18)C18—C15—C16—C17179.9 (2)
C2—C3—C4—C915.9 (2)C15—C16—C17—C12−0.8 (3)
C9—C4—C5—C6−0.4 (3)C13—C12—C17—C161.2 (3)
C3—C4—C5—C6−178.46 (18)S1—C12—C17—C16−173.61 (16)
C32—O3—C6—C70.6 (3)C2—C3—C19—C24−118.83 (19)
C32—O3—C6—C5179.61 (18)C4—C3—C19—C24117.29 (19)
C4—C5—C6—O3−179.17 (17)C2—C3—C19—C2059.2 (2)
C4—C5—C6—C7−0.1 (3)C4—C3—C19—C20−64.7 (2)
O3—C6—C7—C8179.58 (19)C24—C19—C20—C210.0 (3)
C5—C6—C7—C80.6 (3)C3—C19—C20—C21−178.04 (18)
C6—C7—C8—C9−0.6 (3)C19—C20—C21—C22−0.5 (3)
C7—C8—C9—C40.1 (3)C20—C21—C22—C231.0 (3)
C7—C8—C9—N2−177.01 (19)C21—C22—C23—C24−1.0 (3)
C5—C4—C9—C80.4 (3)C20—C19—C24—C230.0 (3)
C3—C4—C9—C8178.37 (17)C3—C19—C24—C23178.09 (18)
C5—C4—C9—N2177.43 (18)C22—C23—C24—C190.5 (3)
C3—C4—C9—N2−4.6 (3)N1—C11—C25—C26174.16 (16)
C10—N2—C9—C8−159.30 (18)C10—C11—C25—C2659.8 (2)
C10—N2—C9—C423.6 (3)C11—C25—C26—C27−102.6 (2)
C9—N2—C10—C2−53.1 (2)C11—C25—C26—C3177.6 (2)
C9—N2—C10—C11−168.66 (16)C31—C26—C27—C282.0 (3)
C1—C2—C10—N2−167.42 (15)C25—C26—C27—C28−177.81 (18)
C3—C2—C10—N266.5 (2)C26—C27—C28—C29−1.1 (3)
C1—C2—C10—C11−44.36 (18)C27—C28—C29—C30−0.8 (3)
C3—C2—C10—C11−170.41 (15)C28—C29—C30—C311.6 (3)
C1—N1—C11—C25−126.22 (17)C29—C30—C31—C26−0.5 (3)
S1—N1—C11—C2596.32 (18)C27—C26—C31—C30−1.2 (3)
C1—N1—C11—C10−4.1 (2)C25—C26—C31—C30178.62 (18)
S1—N1—C11—C10−141.61 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C30—H30···O3i0.932.533.196 (3)128
C24—H24···Cg1ii0.932.563.476 (2)169
N2—H1N2···Cg20.88 (2)3.063.837 (2)147

Symmetry codes: (i) x, y+1, z; (ii) x, −y−3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2940).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.
  • Ferlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2001). Bioorg. Med. Chem.9, 1843–1848. [PubMed]
  • Ryu, C. K., Lee, J. Y., Jeong, S. H. & Nho, J. H. (2009). Bioorg. Med. Chem. Lett.19, 146–148. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914–o4915.
  • Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008a). Acta Cryst. E64, o134. [PMC free article] [PubMed]
  • Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008b). Acta Cryst. E64, o425. [PMC free article] [PubMed]
  • Tsuji, K., Tsubouchi, H. & Ishikawa, H. (1995). Chem. Pharm. Bull. (Tokyo), 43, 1678–1682. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography