PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1369.
Published online 2009 October 17. doi:  10.1107/S1600536809041154
PMCID: PMC2971002

Di-μ2-chlorido-bis­[chlorido(η6-hexa­methyl­benzene)ruthenium(II)]

Abstract

Dimeric mol­ecules of the title compound, [Ru2Cl4(C12H18)2], are located on a crystallographic centre of inversion with one mol­ecule in the asymmetric unit. The hexa­methyl­benzene rings are in an η6-coordination to the ruthenium centres, which are bridged by two chloride ligands. In addition, the ruthenium centres are bonded to another chloride ligand. The aromatic rings and the Ru2Cl2 four-membered ring enclose a dihedral angle of 55.85 (6)°.

Related literature

For the properties and potential applications of half-sandwich ruthenium (II) complexes, see: Le Bozec et al. (1989 [triangle]); Leyva et al. (2007 [triangle]); Ryabov et al. (2001 [triangle]). For our work on the synthesis and catalytic applications of different ruthenium–arene complexes, see: Cerón-Camacho et al. (2006 [triangle]). For the synthesis, see: Bennett et al. (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1369-scheme1.jpg

Experimental

Crystal data

  • [Ru2Cl4(C12H18)2]
  • M r = 668.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1369-efi1.jpg
  • a = 8.9122 (15) Å
  • b = 8.5192 (15) Å
  • c = 16.642 (3) Å
  • β = 97.084 (3)°
  • V = 1253.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.64 mm−1
  • T = 298 K
  • 0.23 × 0.09 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.780, T max = 0.924
  • 10027 measured reflections
  • 2297 independent reflections
  • 1795 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.063
  • S = 0.90
  • 2297 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041154/bt5080sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041154/bt5080Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support of this research by CONACYT (F58692, 57556) and DGAPA-UNAM (IN227008, IN205209) is gratefully acknowledged.

supplementary crystallographic information

Comment

For decades, arene ruthenium complexes have played an important role in organometallic chemistry as fundamental precursors for the synthesis of a plethora of species. This is particularly true for the synthesis of half sandwich ruthenium (II) complexes, species that have received considerable attention owing to their potential catalytic properties (Le Bozec et al., 1989), interesting anti-tumor and anti-carcinogenic activity (Leyva et al., 2007) and most recently for their potential applications in chemical and biological sensors (Ryabov, et al., 2001). Thus, given our continuous interest in the synthesis and catalytic applications of different ruthenium arene complexes (Cerón-Camacho et al., 2006) we determined the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a half molecule, which is completed with a symmetry operation of 1 - x, 1 - y, 1 - z. The complex exhibits a typical η6 - arene coordination of the hexamethyl fragment to the ruthenium centres which are bridged by two chloro ligands. The coordination sphere of the Ru centres is completed by another chloro ligand. The aromatic rings and the Ru2Cl2 four-membered ring enclose a dihedral angle of 55.85 (6)°.

Experimental

The title compound was prepared according to the procedure reported by Bennett et al. (1982). The spectroscopic analysis agreed with that reported in the same reference.

Refinement

H atoms were placed in geometrically idealized positions with C-H = 0.96 Å and with Uiso(H) = 1.2 Ueq(C) and refined using the riding model. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms omitted.

Crystal data

[Ru2Cl4(C12H18)2]F(000) = 672
Mr = 668.47Dx = 1.771 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4016 reflections
a = 8.9122 (15) Åθ = 2.5–25.3°
b = 8.5192 (15) ŵ = 1.64 mm1
c = 16.642 (3) ÅT = 298 K
β = 97.084 (3)°Prism, red
V = 1253.9 (4) Å30.23 × 0.09 × 0.05 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer2297 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
graphiteRint = 0.065
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.5°
ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 1999)k = −10→10
Tmin = 0.780, Tmax = 0.924l = −20→19
10027 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0193P)2] where P = (Fo2 + 2Fc2)/3
2297 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.37378 (4)0.37262 (4)0.55348 (2)0.02300 (11)
Cl10.24729 (13)0.30866 (15)0.42186 (7)0.0382 (3)
Cl20.61218 (11)0.35592 (12)0.49415 (6)0.0297 (3)
C10.4006 (5)0.4464 (5)0.6809 (2)0.0316 (11)
C20.2421 (5)0.4425 (5)0.6495 (2)0.0293 (10)
C30.1792 (5)0.3056 (5)0.6121 (2)0.0281 (10)
C40.2721 (5)0.1702 (5)0.6053 (3)0.0312 (11)
C50.4287 (5)0.1741 (5)0.6343 (3)0.0341 (11)
C60.4913 (5)0.3142 (6)0.6727 (2)0.0325 (11)
C70.4686 (6)0.5943 (6)0.7198 (3)0.0524 (15)
H7A0.38920.66610.72870.063*
H7B0.53350.64200.68490.063*
H7C0.52630.56880.77070.063*
C80.1465 (5)0.5866 (5)0.6552 (3)0.0458 (13)
H8A0.19760.67620.63650.055*
H8B0.12970.60270.71050.055*
H8C0.05120.57290.62220.055*
C90.0143 (5)0.2997 (6)0.5765 (3)0.0451 (13)
H9A−0.02930.40250.57840.054*
H9B−0.03910.22800.60730.054*
H9C0.00680.26490.52130.054*
C100.2020 (6)0.0244 (5)0.5645 (3)0.0504 (14)
H10A0.2759−0.05800.56770.060*
H10B0.16800.04700.50870.060*
H10C0.1177−0.00820.59110.060*
C110.5297 (6)0.0355 (6)0.6247 (3)0.0563 (15)
H11A0.5450−0.02230.67450.068*
H11B0.62540.07180.61100.068*
H11C0.4832−0.03130.58230.068*
C120.6585 (5)0.3210 (6)0.7036 (3)0.0537 (15)
H12A0.69840.42120.69050.064*
H12B0.71060.23920.67860.064*
H12C0.67220.30690.76130.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.02306 (18)0.02546 (19)0.02091 (18)0.00141 (17)0.00441 (13)0.00103 (17)
Cl10.0363 (7)0.0503 (8)0.0268 (6)−0.0021 (6)−0.0011 (5)−0.0047 (5)
Cl20.0296 (6)0.0288 (6)0.0324 (6)0.0053 (5)0.0104 (5)0.0030 (5)
C10.036 (3)0.042 (3)0.018 (2)−0.008 (2)0.008 (2)−0.002 (2)
C20.033 (3)0.035 (3)0.022 (2)0.007 (2)0.012 (2)0.004 (2)
C30.027 (2)0.036 (3)0.023 (2)0.000 (2)0.0078 (19)0.007 (2)
C40.038 (3)0.029 (3)0.028 (2)−0.003 (2)0.009 (2)0.006 (2)
C50.040 (3)0.034 (3)0.030 (3)0.004 (2)0.011 (2)0.010 (2)
C60.032 (3)0.048 (3)0.018 (2)0.003 (2)0.005 (2)0.011 (2)
C70.055 (3)0.064 (4)0.040 (3)−0.014 (3)0.013 (3)−0.017 (3)
C80.055 (3)0.040 (3)0.045 (3)0.015 (3)0.018 (3)−0.006 (2)
C90.028 (3)0.061 (3)0.047 (3)−0.005 (3)0.004 (2)0.004 (3)
C100.055 (3)0.035 (3)0.062 (4)−0.005 (3)0.010 (3)−0.003 (3)
C110.061 (4)0.048 (3)0.061 (4)0.018 (3)0.012 (3)0.010 (3)
C120.036 (3)0.081 (4)0.042 (3)0.004 (3)−0.003 (2)0.014 (3)

Geometric parameters (Å, °)

Ru1—C32.168 (4)C5—C111.505 (6)
Ru1—C42.175 (4)C6—C121.516 (6)
Ru1—C52.179 (4)C7—H7A0.9600
Ru1—C22.179 (4)C7—H7B0.9600
Ru1—C62.184 (4)C7—H7C0.9600
Ru1—C12.196 (4)C8—H8A0.9600
Ru1—Cl12.3993 (12)C8—H8B0.9600
Ru1—Cl2i2.4528 (11)C8—H8C0.9600
Ru1—Cl22.4549 (11)C9—H9A0.9600
Cl2—Ru1i2.4528 (11)C9—H9B0.9600
C1—C61.403 (6)C9—H9C0.9600
C1—C21.445 (6)C10—H10A0.9600
C1—C71.509 (6)C10—H10B0.9600
C2—C31.406 (6)C10—H10C0.9600
C2—C81.504 (5)C11—H11A0.9600
C3—C41.432 (6)C11—H11B0.9600
C3—C91.516 (6)C11—H11C0.9600
C4—C51.420 (6)C12—H12A0.9600
C4—C101.513 (6)C12—H12B0.9600
C5—C61.435 (6)C12—H12C0.9600
C3—Ru1—C438.51 (15)C5—C4—C3120.5 (4)
C3—Ru1—C569.46 (16)C5—C4—C10120.4 (4)
C4—Ru1—C538.06 (15)C3—C4—C10119.1 (4)
C3—Ru1—C237.75 (15)C5—C4—Ru171.1 (2)
C4—Ru1—C268.75 (16)C3—C4—Ru170.5 (2)
C5—Ru1—C281.93 (16)C10—C4—Ru1129.9 (3)
C3—Ru1—C681.49 (16)C4—C5—C6118.9 (4)
C4—Ru1—C668.64 (16)C4—C5—C11121.4 (4)
C5—Ru1—C638.39 (16)C6—C5—C11119.7 (4)
C2—Ru1—C668.72 (16)C4—C5—Ru170.8 (2)
C3—Ru1—C168.85 (16)C6—C5—Ru171.0 (2)
C4—Ru1—C181.11 (16)C11—C5—Ru1129.4 (3)
C5—Ru1—C168.71 (17)C1—C6—C5120.9 (4)
C2—Ru1—C138.56 (16)C1—C6—C12119.4 (4)
C6—Ru1—C137.35 (16)C5—C6—C12119.7 (4)
C3—Ru1—Cl192.23 (12)C1—C6—Ru171.8 (2)
C4—Ru1—Cl190.57 (12)C5—C6—Ru170.6 (2)
C5—Ru1—Cl1115.57 (13)C12—C6—Ru1129.8 (3)
C2—Ru1—Cl1119.79 (12)C1—C7—H7A109.5
C6—Ru1—Cl1153.69 (13)C1—C7—H7B109.5
C1—Ru1—Cl1158.35 (12)H7A—C7—H7B109.5
C3—Ru1—Cl2i117.98 (12)C1—C7—H7C109.5
C4—Ru1—Cl2i156.34 (12)H7A—C7—H7C109.5
C5—Ru1—Cl2i156.20 (13)H7B—C7—H7C109.5
C2—Ru1—Cl2i91.89 (12)C2—C8—H8A109.5
C6—Ru1—Cl2i118.07 (13)C2—C8—H8B109.5
C1—Ru1—Cl2i92.19 (12)H8A—C8—H8B109.5
Cl1—Ru1—Cl2i87.48 (4)C2—C8—H8C109.5
C3—Ru1—Cl2160.99 (12)H8A—C8—H8C109.5
C4—Ru1—Cl2122.48 (12)H8B—C8—H8C109.5
C5—Ru1—Cl293.65 (12)C3—C9—H9A109.5
C2—Ru1—Cl2151.86 (12)C3—C9—H9B109.5
C6—Ru1—Cl290.59 (12)H9A—C9—H9B109.5
C1—Ru1—Cl2114.09 (12)C3—C9—H9C109.5
Cl1—Ru1—Cl287.26 (4)H9A—C9—H9C109.5
Cl2i—Ru1—Cl281.00 (4)H9B—C9—H9C109.5
Ru1i—Cl2—Ru199.00 (4)C4—C10—H10A109.5
C6—C1—C2119.7 (4)C4—C10—H10B109.5
C6—C1—C7120.4 (4)H10A—C10—H10B109.5
C2—C1—C7119.8 (4)C4—C10—H10C109.5
C6—C1—Ru170.9 (2)H10A—C10—H10C109.5
C2—C1—Ru170.1 (2)H10B—C10—H10C109.5
C7—C1—Ru1130.1 (3)C5—C11—H11A109.5
C3—C2—C1119.8 (4)C5—C11—H11B109.5
C3—C2—C8120.5 (4)H11A—C11—H11B109.5
C1—C2—C8119.7 (4)C5—C11—H11C109.5
C3—C2—Ru170.7 (2)H11A—C11—H11C109.5
C1—C2—Ru171.3 (2)H11B—C11—H11C109.5
C8—C2—Ru1129.0 (3)C6—C12—H12A109.5
C2—C3—C4120.0 (4)C6—C12—H12B109.5
C2—C3—C9121.0 (4)H12A—C12—H12B109.5
C4—C3—C9119.0 (4)C6—C12—H12C109.5
C2—C3—Ru171.6 (2)H12A—C12—H12C109.5
C4—C3—Ru171.0 (2)H12B—C12—H12C109.5
C9—C3—Ru1128.6 (3)
C3—Ru1—Cl2—Ru1i176.8 (4)C9—C3—C4—C10−1.3 (6)
C4—Ru1—Cl2—Ru1i176.81 (14)Ru1—C3—C4—C10−125.6 (4)
C5—Ru1—Cl2—Ru1i−156.66 (13)C2—C3—C4—Ru1−54.2 (3)
C2—Ru1—Cl2—Ru1i−77.0 (2)C9—C3—C4—Ru1124.3 (4)
C6—Ru1—Cl2—Ru1i−118.35 (13)C3—Ru1—C4—C5−133.7 (4)
C1—Ru1—Cl2—Ru1i−88.37 (14)C2—Ru1—C4—C5−104.6 (3)
Cl1—Ru1—Cl2—Ru1i87.88 (4)C6—Ru1—C4—C5−30.0 (3)
Cl2i—Ru1—Cl2—Ru1i0.0C1—Ru1—C4—C5−66.6 (3)
C3—Ru1—C1—C6104.2 (3)Cl1—Ru1—C4—C5133.4 (2)
C4—Ru1—C1—C666.3 (3)Cl2i—Ru1—C4—C5−141.6 (3)
C5—Ru1—C1—C628.9 (3)Cl2—Ru1—C4—C546.3 (3)
C2—Ru1—C1—C6133.2 (4)C5—Ru1—C4—C3133.7 (4)
Cl1—Ru1—C1—C6134.7 (3)C2—Ru1—C4—C329.1 (2)
Cl2i—Ru1—C1—C6−136.6 (2)C6—Ru1—C4—C3103.7 (3)
Cl2—Ru1—C1—C6−55.4 (3)C1—Ru1—C4—C367.1 (3)
C3—Ru1—C1—C2−29.0 (2)Cl1—Ru1—C4—C3−92.9 (2)
C4—Ru1—C1—C2−66.9 (3)Cl2i—Ru1—C4—C3−7.8 (5)
C5—Ru1—C1—C2−104.3 (3)Cl2—Ru1—C4—C3−180.0 (2)
C6—Ru1—C1—C2−133.2 (4)C3—Ru1—C4—C10112.1 (5)
Cl1—Ru1—C1—C21.6 (5)C5—Ru1—C4—C10−114.2 (5)
Cl2i—Ru1—C1—C290.3 (2)C2—Ru1—C4—C10141.1 (5)
Cl2—Ru1—C1—C2171.4 (2)C6—Ru1—C4—C10−144.3 (5)
C3—Ru1—C1—C7−141.7 (5)C1—Ru1—C4—C10179.1 (4)
C4—Ru1—C1—C7−179.6 (5)Cl1—Ru1—C4—C1019.2 (4)
C5—Ru1—C1—C7143.0 (5)Cl2i—Ru1—C4—C10104.2 (4)
C2—Ru1—C1—C7−112.7 (5)Cl2—Ru1—C4—C10−67.9 (4)
C6—Ru1—C1—C7114.1 (5)C3—C4—C5—C61.9 (6)
Cl1—Ru1—C1—C7−111.1 (4)C10—C4—C5—C6−180.0 (4)
Cl2i—Ru1—C1—C7−22.4 (4)Ru1—C4—C5—C654.2 (4)
Cl2—Ru1—C1—C758.7 (5)C3—C4—C5—C11−177.4 (4)
C6—C1—C2—C30.9 (6)C10—C4—C5—C110.7 (6)
C7—C1—C2—C3179.0 (4)Ru1—C4—C5—C11−125.1 (4)
Ru1—C1—C2—C353.4 (3)C3—C4—C5—Ru1−52.3 (3)
C6—C1—C2—C8−177.4 (4)C10—C4—C5—Ru1125.9 (4)
C7—C1—C2—C80.7 (6)C3—Ru1—C5—C428.7 (3)
Ru1—C1—C2—C8−124.9 (4)C2—Ru1—C5—C465.6 (3)
C6—C1—C2—Ru1−52.5 (3)C6—Ru1—C5—C4131.3 (4)
C7—C1—C2—Ru1125.6 (4)C1—Ru1—C5—C4103.2 (3)
C4—Ru1—C2—C3−29.6 (2)Cl1—Ru1—C5—C4−53.6 (3)
C5—Ru1—C2—C3−66.7 (3)Cl2i—Ru1—C5—C4141.8 (3)
C6—Ru1—C2—C3−104.1 (3)Cl2—Ru1—C5—C4−142.3 (2)
C1—Ru1—C2—C3−132.4 (4)C3—Ru1—C5—C6−102.6 (3)
Cl1—Ru1—C2—C348.2 (3)C4—Ru1—C5—C6−131.3 (4)
Cl2i—Ru1—C2—C3136.4 (2)C2—Ru1—C5—C6−65.7 (3)
Cl2—Ru1—C2—C3−149.3 (2)C1—Ru1—C5—C6−28.1 (2)
C3—Ru1—C2—C1132.4 (4)Cl1—Ru1—C5—C6175.0 (2)
C4—Ru1—C2—C1102.8 (3)Cl2i—Ru1—C5—C610.5 (5)
C5—Ru1—C2—C165.8 (3)Cl2—Ru1—C5—C686.3 (2)
C6—Ru1—C2—C128.4 (3)C3—Ru1—C5—C11144.1 (5)
Cl1—Ru1—C2—C1−179.3 (2)C4—Ru1—C5—C11115.4 (5)
Cl2i—Ru1—C2—C1−91.2 (2)C2—Ru1—C5—C11−179.0 (5)
Cl2—Ru1—C2—C1−16.8 (4)C6—Ru1—C5—C11−113.2 (5)
C3—Ru1—C2—C8−114.0 (5)C1—Ru1—C5—C11−141.4 (5)
C4—Ru1—C2—C8−143.7 (5)Cl1—Ru1—C5—C1161.8 (5)
C5—Ru1—C2—C8179.3 (4)Cl2i—Ru1—C5—C11−102.8 (5)
C6—Ru1—C2—C8141.9 (5)Cl2—Ru1—C5—C11−26.9 (4)
C1—Ru1—C2—C8113.5 (5)C2—C1—C6—C5−0.6 (6)
Cl1—Ru1—C2—C8−65.8 (4)C7—C1—C6—C5−178.7 (4)
Cl2i—Ru1—C2—C822.4 (4)Ru1—C1—C6—C5−52.8 (4)
Cl2—Ru1—C2—C896.7 (4)C2—C1—C6—C12178.2 (4)
C1—C2—C3—C40.2 (6)C7—C1—C6—C120.1 (6)
C8—C2—C3—C4178.5 (4)Ru1—C1—C6—C12126.1 (4)
Ru1—C2—C3—C453.9 (3)C2—C1—C6—Ru152.2 (3)
C1—C2—C3—C9−178.3 (4)C7—C1—C6—Ru1−125.9 (4)
C8—C2—C3—C90.0 (6)C4—C5—C6—C1−0.8 (6)
Ru1—C2—C3—C9−124.5 (4)C11—C5—C6—C1178.5 (4)
C1—C2—C3—Ru1−53.7 (3)Ru1—C5—C6—C153.3 (4)
C8—C2—C3—Ru1124.6 (4)C4—C5—C6—C12−179.6 (4)
C4—Ru1—C3—C2132.3 (4)C11—C5—C6—C12−0.3 (6)
C5—Ru1—C3—C2103.8 (3)Ru1—C5—C6—C12−125.5 (4)
C6—Ru1—C3—C266.0 (3)C4—C5—C6—Ru1−54.1 (4)
C1—Ru1—C3—C229.6 (2)C11—C5—C6—Ru1125.2 (4)
Cl1—Ru1—C3—C2−139.6 (2)C3—Ru1—C6—C1−66.1 (3)
Cl2i—Ru1—C3—C2−51.3 (3)C4—Ru1—C6—C1−103.8 (3)
Cl2—Ru1—C3—C2132.3 (3)C5—Ru1—C6—C1−133.6 (4)
C5—Ru1—C3—C4−28.4 (2)C2—Ru1—C6—C1−29.2 (2)
C2—Ru1—C3—C4−132.3 (4)Cl1—Ru1—C6—C1−143.8 (3)
C6—Ru1—C3—C4−66.2 (3)Cl2i—Ru1—C6—C151.1 (3)
C1—Ru1—C3—C4−102.7 (3)Cl2—Ru1—C6—C1131.2 (2)
Cl1—Ru1—C3—C488.1 (2)C3—Ru1—C6—C567.5 (3)
Cl2i—Ru1—C3—C4176.4 (2)C4—Ru1—C6—C529.8 (2)
Cl2—Ru1—C3—C40.0 (5)C2—Ru1—C6—C5104.4 (3)
C4—Ru1—C3—C9−112.4 (5)C1—Ru1—C6—C5133.6 (4)
C5—Ru1—C3—C9−140.8 (4)Cl1—Ru1—C6—C5−10.1 (4)
C2—Ru1—C3—C9115.4 (5)Cl2i—Ru1—C6—C5−175.2 (2)
C6—Ru1—C3—C9−178.6 (4)Cl2—Ru1—C6—C5−95.1 (2)
C1—Ru1—C3—C9144.9 (5)C3—Ru1—C6—C12−179.5 (5)
Cl1—Ru1—C3—C9−24.3 (4)C4—Ru1—C6—C12142.7 (5)
Cl2i—Ru1—C3—C964.1 (4)C5—Ru1—C6—C12113.0 (6)
Cl2—Ru1—C3—C9−112.3 (4)C2—Ru1—C6—C12−142.6 (5)
C2—C3—C4—C5−1.7 (6)C1—Ru1—C6—C12−113.4 (6)
C9—C3—C4—C5176.9 (4)Cl1—Ru1—C6—C12102.8 (5)
Ru1—C3—C4—C552.5 (4)Cl2i—Ru1—C6—C12−62.3 (5)
C2—C3—C4—C10−179.8 (4)Cl2—Ru1—C6—C1217.8 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5080).

References

  • Bennett, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth.21, 74–78.
  • Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A, 247, 124–129.
  • Le Bozec, H., Touchard, D. & Dixneuf, P. H. (1989). Adv. Organomet. Chem.29, 163–247.
  • Leyva, L., Sirlin, C., Rubio, L., Franco, C., Le Lagadec, R., Bischoff, P., Gaiddon, C., Loeffler, J.-P. & Pfeffer, M. (2007). Eur. J. Inorg. Chem. pp. 3055–3066.
  • Ryabov, A. D., Sukharev, V. S., Alexandrova, L., Le Lagadec, R. & Pfeffer, M. (2001). Inorg. Chem.40, 6529–6532. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography