PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2871.
Published online 2009 October 28. doi:  10.1107/S1600536809043803
PMCID: PMC2970987

2-Chloro-N′-(2-chloro­benzyl­idene)benzohydrazide

Abstract

The mol­ecule of the title compound, C14H10Cl2N2O, adopts an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 79.7 (2)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H(...)O, C—H(...)Cl and C—H(...)O hydrogen bonds, forming chains running along the b axis.

Related literature

For the biological activity of hydra­zones, see: Küçükgüzel et al. (2003 [triangle]); Charkoudian et al. (2007 [triangle]); Avaji et al. (2009 [triangle]); Kümmerle et al. (2009 [triangle]); Raparti et al. (2009 [triangle]); Bayrak et al. (2009 [triangle]); Hearn et al. (2009 [triangle]). For crystal structures of hydrazone compounds, see: Fun et al. (2008 [triangle]); Lo & Ng (2009 [triangle]); Ren (2009 [triangle]); Zhang (2009 [triangle]); Wu (2009 [triangle]); Peng & Hou (2008 [triangle]); Mohd Lair et al. (2009 [triangle]); Liang & Zou (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2871-scheme1.jpg

Experimental

Crystal data

  • C14H10Cl2N2O
  • M r = 293.14
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2871-efi1.jpg
  • a = 11.9336 (5) Å
  • b = 9.7471 (4) Å
  • c = 22.5840 (9) Å
  • V = 2626.93 (19) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 298 K
  • 0.23 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.897, T max = 0.909
  • 15167 measured reflections
  • 2863 independent reflections
  • 2035 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.098
  • S = 1.03
  • 2863 reflections
  • 175 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043803/ci2943sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043803/ci2943Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

D-HZ acknowledges Qiqihar University for financial support.

supplementary crystallographic information

Comment

During the past decades, the human population affected with life-treating infectious diseases caused by multidrug-resistant Gram-positive and Gram-negative pathogen bacteria increased to an alarming level around the world. Recently, a great deal of antibacterial agents were used in therapy. Hydrazones are an important component of the Schiff base family. These compounds have been widely used in the fields of antimicrobial, antibacterial and antitumor (Küçükgüzel et al., 2003; Charkoudian et al., 2007; Avaji et al., 2009; Kümmerle et al., 2009; Raparti et al., 2009; Bayrak et al., 2009; Hearn et al., 2009). In the last few years, crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2008; Lo & Ng, 2009; Ren, 2009; Zhang, 2009). As a continuation of our work in this area (Liang & Zou, 2009), the author reports herein the crystal structure of the title new hydrazone compound.

In the title molecule (Fig. 1), the dihedral angle between the two benzene rings is 79.7 (2)°. The molecule exists in an E configuration about the C═N bond. All bond lengths are within normal values and comparable to those obserbved in related hydrazone compounds (Wu, 2009; Peng & Hou, 2008; Mohd Lair et al., 2009).

In the crystal structure of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Experimental

Equimolar quantities (1.0 mmol each) of 2-chlorobenzaldehyde and 2-chlorobenzohydrazide were mixed and refluxed in methanol. The reaction mixture was cooled to room temperature to give a clear colourless solution. Colourless single crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement

Atom H2 was located in a difference map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å and Uiso set at 0.08 Å2. Other H atoms were placed in calculated positions (C-H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms. H atoms are shown as spheres of arbitrary radius.
Fig. 2.
The packing diagram, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10Cl2N2OF(000) = 1200
Mr = 293.14Dx = 1.482 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2480 reflections
a = 11.9336 (5) Åθ = 2.4–24.5°
b = 9.7471 (4) ŵ = 0.49 mm1
c = 22.5840 (9) ÅT = 298 K
V = 2626.93 (19) Å3Block, colourless
Z = 80.23 × 0.21 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer2863 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
graphiteRint = 0.045
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→11
Tmin = 0.897, Tmax = 0.909k = −12→12
15167 measured reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.038P)2 + 0.9372P] where P = (Fo2 + 2Fc2)/3
2863 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.79500 (6)0.47092 (7)0.48378 (3)0.0674 (2)
Cl20.53369 (5)1.04300 (6)0.72070 (3)0.05271 (18)
N10.84153 (13)0.81563 (16)0.59949 (6)0.0345 (4)
N20.78786 (14)0.79951 (16)0.65338 (7)0.0341 (4)
O10.78386 (13)1.02813 (13)0.67114 (6)0.0445 (4)
C10.90227 (16)0.7097 (2)0.51022 (8)0.0352 (4)
C20.88637 (17)0.6053 (2)0.46878 (9)0.0413 (5)
C30.9388 (2)0.6077 (3)0.41454 (10)0.0540 (6)
H30.92710.53700.38760.065*
C41.0084 (2)0.7148 (3)0.40032 (10)0.0560 (6)
H41.04340.71670.36350.067*
C51.02694 (18)0.8197 (2)0.44010 (9)0.0494 (6)
H51.07430.89200.43030.059*
C60.97447 (17)0.8163 (2)0.49456 (9)0.0415 (5)
H60.98760.88670.52150.050*
C70.84564 (16)0.70741 (19)0.56775 (8)0.0359 (4)
H70.81260.62680.58120.043*
C80.76315 (16)0.91055 (19)0.68656 (8)0.0327 (4)
C90.71126 (16)0.87531 (19)0.74505 (8)0.0346 (4)
C100.61214 (17)0.9330 (2)0.76526 (9)0.0387 (5)
C110.5702 (2)0.9017 (3)0.82073 (10)0.0520 (6)
H110.50420.94220.83390.062*
C120.6263 (2)0.8106 (3)0.85620 (10)0.0600 (7)
H120.59820.78970.89350.072*
C130.7236 (2)0.7499 (3)0.83710 (10)0.0570 (6)
H130.76060.68690.86110.068*
C140.76608 (19)0.7831 (2)0.78197 (9)0.0462 (5)
H140.83260.74300.76940.055*
H20.768 (2)0.7142 (14)0.6655 (11)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0867 (5)0.0575 (4)0.0581 (4)−0.0282 (3)0.0204 (3)−0.0183 (3)
Cl20.0438 (3)0.0540 (4)0.0603 (4)0.0084 (3)−0.0088 (3)−0.0094 (3)
N10.0413 (9)0.0334 (9)0.0288 (8)0.0033 (7)0.0049 (7)0.0008 (7)
N20.0447 (10)0.0279 (8)0.0297 (8)0.0004 (7)0.0066 (7)−0.0014 (7)
O10.0614 (10)0.0267 (7)0.0452 (8)0.0046 (7)0.0093 (7)0.0024 (6)
C10.0396 (11)0.0358 (11)0.0301 (10)0.0058 (8)0.0022 (8)0.0013 (8)
C20.0448 (12)0.0416 (12)0.0376 (11)−0.0017 (9)0.0059 (9)−0.0040 (9)
C30.0608 (15)0.0597 (15)0.0415 (12)−0.0060 (12)0.0127 (11)−0.0152 (11)
C40.0565 (14)0.0716 (17)0.0399 (12)−0.0003 (12)0.0174 (11)−0.0033 (12)
C50.0482 (13)0.0532 (14)0.0467 (12)−0.0033 (11)0.0100 (10)0.0051 (11)
C60.0486 (13)0.0370 (11)0.0390 (11)−0.0009 (9)0.0038 (9)0.0007 (9)
C70.0452 (11)0.0308 (10)0.0318 (10)0.0007 (9)0.0034 (8)0.0015 (8)
C80.0354 (10)0.0285 (10)0.0341 (10)0.0027 (8)−0.0007 (8)−0.0006 (8)
C90.0412 (11)0.0314 (10)0.0314 (10)−0.0012 (8)0.0024 (8)−0.0035 (8)
C100.0380 (11)0.0379 (11)0.0402 (11)−0.0033 (9)0.0002 (9)−0.0109 (9)
C110.0460 (13)0.0633 (15)0.0467 (13)−0.0057 (11)0.0126 (10)−0.0157 (12)
C120.0669 (17)0.0763 (18)0.0368 (12)−0.0104 (14)0.0154 (12)0.0003 (12)
C130.0686 (16)0.0625 (15)0.0398 (12)0.0039 (13)0.0043 (11)0.0107 (11)
C140.0535 (13)0.0460 (13)0.0391 (11)0.0066 (10)0.0070 (10)0.0025 (10)

Geometric parameters (Å, °)

Cl1—C21.738 (2)C5—C61.381 (3)
Cl2—C101.743 (2)C5—H50.93
N1—C71.276 (2)C6—H60.93
N1—N21.384 (2)C7—H70.93
N2—C81.349 (2)C8—C91.499 (3)
N2—H20.908 (10)C9—C101.387 (3)
O1—C81.223 (2)C9—C141.389 (3)
C1—C61.395 (3)C10—C111.383 (3)
C1—C21.395 (3)C11—C121.371 (3)
C1—C71.465 (3)C11—H110.93
C2—C31.376 (3)C12—C131.372 (3)
C3—C41.373 (3)C12—H120.93
C3—H30.93C13—C141.383 (3)
C4—C51.379 (3)C13—H130.93
C4—H40.93C14—H140.93
C7—N1—N2114.69 (16)N1—C7—H7119.9
C8—N2—N1119.89 (15)C1—C7—H7119.9
C8—N2—H2120.6 (17)O1—C8—N2123.33 (17)
N1—N2—H2119.5 (17)O1—C8—C9123.31 (17)
C6—C1—C2117.19 (17)N2—C8—C9113.33 (16)
C6—C1—C7121.43 (18)C10—C9—C14117.81 (18)
C2—C1—C7121.39 (18)C10—C9—C8123.31 (17)
C3—C2—C1121.5 (2)C14—C9—C8118.85 (17)
C3—C2—Cl1118.13 (17)C11—C10—C9121.1 (2)
C1—C2—Cl1120.29 (15)C11—C10—Cl2117.69 (17)
C4—C3—C2119.8 (2)C9—C10—Cl2121.17 (15)
C4—C3—H3120.1C12—C11—C10119.7 (2)
C2—C3—H3120.1C12—C11—H11120.1
C3—C4—C5120.6 (2)C10—C11—H11120.1
C3—C4—H4119.7C11—C12—C13120.6 (2)
C5—C4—H4119.7C11—C12—H12119.7
C4—C5—C6119.3 (2)C13—C12—H12119.7
C4—C5—H5120.3C12—C13—C14119.5 (2)
C6—C5—H5120.3C12—C13—H13120.3
C5—C6—C1121.6 (2)C14—C13—H13120.3
C5—C6—H6119.2C13—C14—C9121.3 (2)
C1—C6—H6119.2C13—C14—H14119.4
N1—C7—C1120.20 (17)C9—C14—H14119.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (1)1.92 (1)2.809 (2)166 (2)
C7—H7···O1i0.932.533.301 (2)141
C14—H14···Cl2i0.932.753.620 (2)156

Symmetry codes: (i) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2943).

References

  • Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem.44, 3552–3559. [PubMed]
  • Bayrak, H., Demirbas, A., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem.44, 4362-4366. [PubMed]
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031–5042. [PubMed]
  • Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [PMC free article] [PubMed]
  • Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., Kang, H. J.-O., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem.44, 4169–4178. [PMC free article] [PubMed]
  • Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem.38, 1005–1013. [PubMed]
  • Kümmerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G. & Fraga, C. A. M. (2009). Eur. J. Med. Chem.44, 4004–4009. [PubMed]
  • Liang, M. & Zou, D.-H. (2009). Acta Cryst. E65, o1609. [PMC free article] [PubMed]
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969. [PMC free article] [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190. [PMC free article] [PubMed]
  • Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864. [PMC free article] [PubMed]
  • Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem.44, 3954–3960. [PubMed]
  • Ren, C.-G. (2009). Acta Cryst. E65, o1503–o1504. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, H.-Y. (2009). Acta Cryst. E65, o852. [PMC free article] [PubMed]
  • Zhang, X. (2009). Acta Cryst. E65, o1388. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography