PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2625.
Published online 2009 October 3. doi:  10.1107/S1600536809039038
PMCID: PMC2970981

Ethyl­enediammonium dichloro­iodide chloride

Abstract

The asymmetric unit of the crystal structure of the title compound, C2H10N2 2+·Cl2I·Cl, contains two ethyl­ene­diammonium cations, two [ICl2] anions and two Cl anions, of which one cation, one [ICl2] anion and one Cl anion have site symmetry 2, with the mid-point of the C—C bond of the cation, the I atom of [ICl2] anion and the Cl anion located on the twofold rotation axes. The two independent cations show different conformations, the N—C—C—N torsion angles being 160.1 (2) and −73.1 (4)°. The crystal structure is stabilized by extensive inter­molecular N—H(...)Cl hydrogen bonding.

Related literature

For general background to combining protonated aromatic nitro­gen bases with halide or polyhalide ions, see: Tucker & Kroon (1973 [triangle]); Bandoli et al. (1978 [triangle]). For Cl—I bond lengths and Cl–I–Cl bond angles, see: Lang et al. (2000 [triangle]); Wang et al. (1999a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2625-scheme1.jpg

Experimental

Crystal data

  • C2H10N2 2+·Cl2I·Cl
  • M r = 295.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2625-efi3.jpg
  • a = 8.565 (2) Å
  • b = 16.2186 (15) Å
  • c = 19.9631 (16) Å
  • β = 101.164 (16)°
  • V = 2720.8 (7) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 4.34 mm−1
  • T = 293 K
  • 0.36 × 0.30 × 0.28 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.230, T max = 0.301
  • 13418 measured reflections
  • 3106 independent reflections
  • 2821 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.056
  • S = 1.10
  • 3106 reflections
  • 114 parameters
  • H-atom parameters constrained
  • Δρmax = 0.92 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039038/xu2588sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039038/xu2588Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

supplementary crystallographic information

Comment

Recently much attention has been devoted to combining protonated aromatic nitrogen bases with halide or polyhalide ions due to their interesting structural features (Tucker & Kroon, 1973; Bandoli et al., 1978). In our laboratory, a compound containing diprotonated ethylenediamine and ICl2 anions has been synthesized, its crystal structure is reported herein.

The asymmetric unit of the title compound, [C2H10N2]2+.[ICl2]-.Cl-, (Fig. 1) consists of two diprotonated ethylenediammonium cations, two [ICl2]- anions and two Cl- anions. The dichloroiodide anion Cl1–I1–Cl1A has site symmetry 2 and is linear with Cl1—I1—Cl1A bond angle of 179.55 (4). The Cl1—I1 bond length is similar to the values of 2.5417 (11) to 2.5575 (10) Å reported by (Wang et al., 1999a,b). In Cl2—I2—Cl3 anion, the I2—Cl3 bond length of 2.6790 (9) Å is longer than I2—Cl2 bond length of 2.4518 (10) Å. The Cl2—I2—Cl3 is also nearly linear, the Cl2—I2—Cl3 bond angle being 178.30 (3)°. The nearly linear Cl—I—Cl bonds are similar to those reported by Lang et al. (2000) and Wang et al. (1999a,b). The two independent cations show the different conformations, the N-C-C-N torsion angles being 160.1 (2) and -73.1 (4)°. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Fig. 2).

Experimental

KI (0.33 g) and I2 (0.5 g) were dissolved in a mixed solution of ethanol (30 ml) and concentrated hydrochloric acid (10 ml, 36%). On addition of ethylenediamine (0.60 g) to the above solution, the mixture was stirred for 2 h, then filtered. The filtrate was left at room temperature to allow the solvent to evaporate. Yellow transparent block crystals were obtained after two weeks.

Refinement

H atoms were placed in calculated positions with C—H = 0.97 Å and N—H = 0.89 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Figures

Fig. 1.
The structure of the title compound with atom labels. Displacement ellipsoids were drawn at the 40% probability level [symmetry code: (i) -x, y, -z+1/2; (ii) 2-x, y, -z+1/2].

Crystal data

C2H10N22+·Cl2I·ClF(000) = 1680
Mr = 295.37Dx = 2.163 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2821 reflections
a = 8.565 (2) Åθ = 2.5–27.5°
b = 16.2186 (15) ŵ = 4.34 mm1
c = 19.9631 (16) ÅT = 293 K
β = 101.164 (16)°Block, yellow
V = 2720.8 (7) Å30.36 × 0.30 × 0.28 mm
Z = 12

Data collection

Rigaku SCXmini diffractometer3106 independent reflections
Radiation source: fine-focus sealed tube2821 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −20→20
Tmin = 0.230, Tmax = 0.301l = −25→25
13418 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.056w = 1/[σ2(Fo2) + (0.0271P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3106 reflectionsΔρmax = 0.92 e Å3
114 parametersΔρmin = −0.65 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00017 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9115 (3)0.1716 (2)0.24029 (15)0.0472 (8)
H1D0.87580.22430.21990.057*
H1E0.87780.12890.20650.057*
C21.0658 (4)0.8169 (2)0.43343 (16)0.0412 (7)
H2D1.09880.84920.47470.049*
H2E1.11290.76260.44160.049*
C30.8881 (4)0.80844 (18)0.41979 (16)0.0415 (7)
H3D0.85390.78490.37470.050*
H3E0.85920.77000.45260.050*
Cl10.30378 (10)0.45106 (5)0.26597 (4)0.04654 (19)
Cl21.16812 (9)0.58195 (6)0.42064 (4)0.04530 (19)
Cl30.57256 (8)0.54598 (5)0.41952 (3)0.03576 (16)
Cl40.50000.23483 (7)0.25000.0401 (2)
Cl50.47720 (9)0.79063 (5)0.40942 (4)0.04283 (18)
I10.00000.450435 (17)0.25000.03375 (8)
I20.88263 (2)0.564990 (11)0.418170 (9)0.02956 (7)
N10.8379 (3)0.15711 (16)0.29954 (12)0.0395 (6)
H1A0.84850.10420.31140.059*
H1B0.73510.17000.28900.059*
H1C0.88550.18830.33420.059*
N21.1282 (3)0.85669 (15)0.37681 (12)0.0384 (6)
H2A1.08200.83420.33720.058*
H2B1.23300.84920.38320.058*
H2C1.10690.91040.37620.058*
N30.8007 (3)0.88669 (15)0.42352 (12)0.0382 (6)
H3A0.84010.91230.46260.057*
H3B0.69810.87590.42160.057*
H3C0.81150.91890.38860.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0272 (16)0.084 (3)0.0303 (15)−0.0052 (16)0.0042 (13)0.0027 (16)
C20.0345 (17)0.0478 (18)0.0391 (16)0.0067 (13)0.0013 (13)0.0026 (14)
C30.0399 (18)0.0322 (16)0.0529 (19)−0.0026 (12)0.0100 (15)0.0020 (14)
Cl10.0356 (4)0.0628 (5)0.0405 (4)0.0103 (4)0.0056 (3)0.0010 (4)
Cl20.0291 (4)0.0586 (5)0.0487 (4)−0.0054 (3)0.0089 (3)0.0000 (4)
Cl30.0263 (3)0.0409 (4)0.0391 (4)0.0016 (3)0.0038 (3)−0.0005 (3)
Cl40.0340 (5)0.0407 (6)0.0420 (6)0.000−0.0016 (4)0.000
Cl50.0300 (4)0.0488 (4)0.0488 (4)−0.0043 (3)0.0055 (3)−0.0040 (3)
I10.03698 (16)0.03827 (15)0.02565 (13)0.0000.00517 (11)0.000
I20.02793 (11)0.03197 (11)0.02788 (10)0.00081 (7)0.00317 (7)−0.00044 (7)
N10.0337 (13)0.0450 (15)0.0410 (14)0.0042 (11)0.0099 (11)0.0038 (11)
N20.0295 (13)0.0401 (14)0.0463 (14)0.0023 (10)0.0090 (11)−0.0025 (11)
N30.0310 (13)0.0435 (14)0.0413 (14)−0.0039 (11)0.0103 (11)−0.0044 (11)

Geometric parameters (Å, °)

C1—N11.463 (4)Cl2—I22.4518 (10)
C1—C1i1.491 (6)Cl3—I22.6790 (9)
C1—H1D0.9700I1—Cl1ii2.5595 (10)
C1—H1E0.9700N1—H1A0.8900
C2—N21.488 (4)N1—H1B0.8900
C2—C31.499 (4)N1—H1C0.8900
C2—H2D0.9700N2—H2A0.8900
C2—H2E0.9700N2—H2B0.8900
C3—N31.483 (4)N2—H2C0.8900
C3—H3D0.9700N3—H3A0.8900
C3—H3E0.9700N3—H3B0.8900
Cl1—I12.5595 (10)N3—H3C0.8900
N1—C1—C1i111.4 (3)Cl2—I2—Cl3178.30 (3)
N1—C1—H1D109.3C1—N1—H1A109.5
C1i—C1—H1D109.3C1—N1—H1B109.5
N1—C1—H1E109.3H1A—N1—H1B109.5
C1i—C1—H1E109.3C1—N1—H1C109.5
H1D—C1—H1E108.0H1A—N1—H1C109.5
N2—C2—C3113.8 (3)H1B—N1—H1C109.5
N2—C2—H2D108.8C2—N2—H2A109.5
C3—C2—H2D108.8C2—N2—H2B109.5
N2—C2—H2E108.8H2A—N2—H2B109.5
C3—C2—H2E108.8C2—N2—H2C109.5
H2D—C2—H2E107.7H2A—N2—H2C109.5
N3—C3—C2114.7 (3)H2B—N2—H2C109.5
N3—C3—H3D108.6C3—N3—H3A109.5
C2—C3—H3D108.6C3—N3—H3B109.5
N3—C3—H3E108.6H3A—N3—H3B109.5
C2—C3—H3E108.6C3—N3—H3C109.5
H3D—C3—H3E107.6H3A—N3—H3C109.5
Cl1—I1—Cl1ii179.55 (4)H3B—N3—H3C109.5

Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1iii0.892.653.410 (3)144
N1—H1A···Cl3iii0.892.763.341 (3)124
N1—H1B···Cl40.892.273.136 (2)164
N1—H1C···Cl5iii0.892.273.148 (3)168
N2—H2A···Cl4iv0.892.383.232 (3)161
N2—H2B···Cl5v0.892.263.123 (3)162
N2—H2C···Cl3iv0.892.403.246 (3)159
N3—H3A···Cl3vi0.892.423.297 (2)167
N3—H3B···Cl50.892.323.144 (3)154
N3—H3C···Cl1iv0.892.493.319 (2)155

Symmetry codes: (iii) x+1/2, y−1/2, z; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) −x+3/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2588).

References

  • Bandoli, G., Clemente, D. A. & Nicolini, M. (1978). J. Cryst. Mol. Struct.8, 279–293.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lang, E. S., Burrow, R. A. & Diniz, J. (2000). Acta Cryst. C56, 471–472. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tucker, P. A. & Kroon, P. A. (1973). Acta Cryst. B29, 2967–2968.
  • Wang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999a). Acta Cryst. C55, 1503–1506.
  • Wang, Z.-M., Wang, Y.-Q., Liao, C.-S. & Yan, C.-H. (1999b). Acta Cryst. C55, 1506–1508.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography