PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2831.
Published online 2009 October 23. doi:  10.1107/S1600536809042573
PMCID: PMC2970979

5-(4,5-Diiodo-1,3-dithiol-2-yl­idene)-4′,5′-bis­(methyl­sulfan­yl)-2,2′-bi-1,3-dithiole-4(5H)-thione

Abstract

The mol­ecular skeleton of the title mol­ecule, C11H6I2S9, is nearly planar [maximum deviation 0.052 (3) Å] except for the two methyl groups. In the crystal, mol­ecules related by translation along b axis are associated into columns through π–π inter­actions between the five-membered rings, with a centroid–centroid distance of 3.593 (5) Å. Inter­action between adjacent columns is accomplished by short S(...)I contacts of 3.2099 (4) Å.

Related literature

For background to tetra­thia­fulvalenothio­quinone-1,3-dithiol­emethide derivatives, see: Iwamatsu et al. (2000 [triangle]); Wang et al. (2005 [triangle], 2007 [triangle]); Hiraoka et al. (2005 [triangle]); Fujiwara et al. (2006 [triangle], 2007 [triangle]). For details of the synthesis, see Iwamatsu et al. (1999 [triangle]). For inter­molecular S(...)I contacts, see: Ahlsen & Strømme (1974 [triangle]); Herbstein & Schwortzer (1984 [triangle]); Freemanm et al. (1988 [triangle]); Bigoli et al. (1996 [triangle]). For van der Waals radii, see: Bondi (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2831-scheme1.jpg

Experimental

Crystal data

  • C11H6I2S9
  • M r = 680.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2831-efi1.jpg
  • a = 29.540 (7) Å
  • b = 5.3543 (13) Å
  • c = 25.163 (6) Å
  • β = 103.544 (3)°
  • V = 3869.2 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.21 mm−1
  • T = 93 K
  • 0.55 × 0.18 × 0.01 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.205, T max = 0.979
  • 10568 measured reflections
  • 4387 independent reflections
  • 3536 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.090
  • S = 1.07
  • 4387 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 3.45 e Å−3
  • Δρmin = −2.31 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: XCIF (Bruker, 2001 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042573/cv2627sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042573/cv2627Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Hamashin Regional Development Foundation and the Japan Chemical Innovation Institute.

supplementary crystallographic information

Comment

Charge transfer (CT) complexes of new donor molecules featuring a skeleton of tetrathiafulvalenothioquinone-1,3-dithiolemethide with magnetic metal ions are used for the preparation of magnetic molecular conductors, especially ferromagnetic semiconductors and metals (Wang et al., 2005, 2007; Hiraoka et al., 2005; Fujiwara et al., 2006, 2007). In the CT salts of an ethylendithiotetrathiafulvalenothioquinone-1,3-dithiolemethide donor with CuBr2, the Cu atom (a Lewis acid) of CuBr2 is bound to the S atom (a Lewis base) of a C=S group in the donor to form a new type of π/d molecular system (Iwamatsu et al., 2000). The introduction of Lewis acids, such as iodine atoms, as substituents in the molecular skeleton is expected to enhance intermolecular interaction through the formation of S···I contacts. These contacts are of special interest in these structures as they may increase the dimensionality of aggregation in the solid-state. In this context, the crystal structure of the title compound, (I), was investigated.

The molecular framework of (I), Fig. 1, except for two methylthio groups, is almost planar [maximum deviation 0.052 (3) Å]. The displacements of atoms S8, S9, I1 and I2 relative to the plane of the skeleton are -0.164 (3), -0.151 (3), 0.164 (3) and 0.277 (3) Å, respectively. The torsion angles of the two methylthio groups are -136.95° for C10—S8—C8—C9 and 80.97° for C11—S9—C9—C8. In the crystal structure, two different arrangements of the molecules are present. One arrangement has a dihedral angle of 48.41° to the ac plane, while the other has a dihedral angle of 131.51° to the ac plane. As a result, the molecules are stacked in the same orientations to form one-dimensional columns along the [110] and [1–10] directions (Fig. 2). Although the weak interaction between stacked molecules in the columns is accomplished through contacts between different sulfur atoms [S3···S5i = 3.5916 (6) Å; symmetry code: (i) +x, 1 + y, +z] is shorter than the sum of van der Waals radii of two sulfur atoms (3.60 Å), stacked molecules are separated by interplanar distances greater than 3.54 Å and have fairly poor overlap (Bondi, 1964). However, some effective side-by-side contacts are observed between molecules of adjacent columns. The interaction between columns is accomplished by contacts between sulfur and iodine atoms [S3···I1ii = 3.2099 (4) Å; symmetry code: (ii) 2 - x, -1 + y, 1/2 - z] along the a axis (Fig. 3). This distance is shorter than the sum of van der Waals radii of sulfur and iodine atoms (3.78 Å). In the two molecules bound by sulfur-iodine interaction, the C5—S3—I1ii—C1ii moieties are not planar and almost linear S3—I1ii—C1ii fragments lie roughly perpendicular to the molecular skeleton [torsion angle of -81.47° for I1i—S3—C5—S5 and torsion angle of 97.60° for I1i—S3—C5—C4], and the dihedral angle of the molecules is 83.11°. Such sulfur-iodine interactions have been observed previously (Ahlsen et al.,1974; Herbstein et al., 1984; Freemanm et al., 1988; Bigoli et al., 1996).

Experimental

Compound (I) was synthesized by a modification of the method used for the preparation of bis(methylthio)tetrathiafulvalenothioquinone-1,3-dithiolemethide (Iwamatsu et al.,1999). Bis(tetraethylammonium)bis(2,3-bis(methylthio)tetrathiafulvalenyl-6,7-dithiolato)zinc (269 mg, 0.258 mmol) was reacted with 4,5-diiodo-2-methylthio-1,3-dithiole-2,3-dithiolium tetrafluoroborate (535 mg, 1.10 mmol) in THF-DMF (5:1 = v/v) at room temperature under nitrogen, and stirring was carried out for 12 h. After separation of the reaction mixture by column chromatography on silica gel (eluent: CS2) followed by recrystallization from CS2/n-hexane, (I) was obtained as black needles in 72% yield.

Refinement

The H atoms were geometrically positioned with C—H: 0.98 Å, and refined as riding, with Uiso(H)= 1.5Ueq(C). The highest residual peak [3.45 e Å-3] and deepest hole [-2.31 e Å-3] are situated 0.98 Å and 0.69 Å at atom I2, respectively.

Figures

Fig. 1.
The molecular structure of (I) showing atom labelling and 50% probability displacement ellipsoids for non H-atoms.
Fig. 2.
Projection of the crystal packing in (I) down the ab plane. The S···S (black) and S···I (blue) contacts are shown with dashed lines. H atoms are omitted for clarity.
Fig. 3.
Projection of the crystal packing in (I) down the ac plane. The S···I (blue) contacts are shown with dashed lines. H atoms are omitted for clarity.

Crystal data

C11H6I2S9F(000) = 2576
Mr = 680.50Dx = 2.336 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2871 reflections
a = 29.540 (7) Åθ = 2.4–27.5°
b = 5.3543 (13) ŵ = 4.21 mm1
c = 25.163 (6) ÅT = 93 K
β = 103.544 (3)°Needle, black
V = 3869.2 (16) Å30.55 × 0.18 × 0.01 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer4387 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode3536 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirrorRint = 0.040
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 1.4°
[var phi] and ω scansh = −38→36
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −6→6
Tmin = 0.205, Tmax = 0.979l = −24→32
10568 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.028P)2 + 20.8292P] where P = (Fo2 + 2Fc2)/3
4387 reflections(Δ/σ)max = 0.002
201 parametersΔρmax = 3.45 e Å3
0 restraintsΔρmin = −2.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.01287 (15)1.3727 (9)0.35298 (19)0.0158 (10)
C21.02057 (16)1.2692 (10)0.4024 (2)0.0198 (11)
C30.94845 (15)1.0393 (9)0.34447 (18)0.0150 (10)
C40.91248 (16)0.8707 (9)0.32900 (19)0.0157 (10)
C50.88305 (16)0.8507 (9)0.27608 (19)0.0152 (10)
C60.85596 (16)0.5009 (9)0.3338 (2)0.0177 (10)
C70.83308 (16)0.3149 (10)0.35177 (19)0.0180 (11)
C80.80459 (17)−0.0037 (10)0.4151 (2)0.0213 (11)
C90.77585 (16)−0.0346 (10)0.3660 (2)0.0197 (11)
C100.8099 (2)0.0697 (12)0.5245 (2)0.0345 (14)
H10A0.84310.10960.53590.052*
H10B0.79880.01280.55620.052*
H10C0.79250.21900.50900.052*
C110.68641 (17)−0.0497 (11)0.3739 (2)0.0244 (12)
H11A0.6975−0.02110.41320.037*
H11B0.6563−0.13580.36670.037*
H11C0.68280.11100.35470.037*
I11.052758 (10)1.64937 (6)0.326836 (12)0.01695 (10)
I21.075939 (14)1.33621 (9)0.468614 (15)0.04003 (14)
S10.96539 (4)1.2618 (2)0.30265 (5)0.0163 (2)
S20.98132 (4)1.0369 (3)0.41150 (5)0.0202 (3)
S30.88601 (4)1.0394 (2)0.22343 (5)0.0186 (3)
S40.90284 (4)0.6524 (2)0.37793 (5)0.0196 (3)
S50.84272 (4)0.6130 (2)0.26660 (5)0.0194 (3)
S60.84983 (4)0.2173 (3)0.42068 (5)0.0217 (3)
S70.78627 (4)0.1484 (3)0.31171 (5)0.0200 (3)
S80.80104 (5)−0.1743 (3)0.47356 (5)0.0231 (3)
S90.72837 (4)−0.2411 (3)0.34965 (5)0.0200 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.013 (2)0.020 (3)0.015 (2)−0.0029 (19)0.0032 (18)−0.002 (2)
C20.018 (2)0.023 (3)0.017 (2)−0.004 (2)−0.0002 (19)0.002 (2)
C30.015 (2)0.017 (3)0.012 (2)0.0032 (19)0.0015 (18)−0.0001 (19)
C40.015 (2)0.015 (3)0.017 (2)0.0032 (19)0.0038 (18)0.004 (2)
C50.017 (2)0.016 (3)0.015 (2)0.0061 (19)0.0073 (18)−0.0025 (19)
C60.017 (2)0.015 (3)0.020 (3)−0.0027 (19)0.0026 (19)−0.004 (2)
C70.017 (2)0.020 (3)0.016 (2)0.000 (2)0.0033 (19)−0.003 (2)
C80.018 (2)0.020 (3)0.026 (3)−0.004 (2)0.007 (2)−0.001 (2)
C90.013 (2)0.020 (3)0.027 (3)−0.002 (2)0.0050 (19)−0.004 (2)
C100.047 (4)0.035 (4)0.024 (3)−0.007 (3)0.015 (3)−0.002 (3)
C110.018 (2)0.029 (3)0.026 (3)−0.001 (2)0.005 (2)−0.004 (2)
I10.01587 (16)0.01857 (18)0.01695 (17)−0.00209 (12)0.00491 (12)−0.00065 (13)
I20.0346 (2)0.0579 (3)0.0204 (2)−0.0239 (2)−0.00805 (16)0.01043 (18)
S10.0161 (6)0.0184 (6)0.0143 (6)−0.0014 (5)0.0033 (4)0.0016 (5)
S20.0195 (6)0.0269 (7)0.0133 (6)−0.0053 (5)0.0019 (5)0.0029 (5)
S30.0198 (6)0.0193 (7)0.0160 (6)0.0023 (5)0.0027 (5)0.0014 (5)
S40.0223 (6)0.0212 (7)0.0153 (6)−0.0046 (5)0.0046 (5)0.0002 (5)
S50.0188 (6)0.0194 (7)0.0185 (6)−0.0034 (5)0.0014 (5)−0.0020 (5)
S60.0208 (6)0.0254 (8)0.0182 (6)−0.0065 (5)0.0031 (5)−0.0005 (5)
S70.0200 (6)0.0215 (7)0.0179 (6)−0.0040 (5)0.0033 (5)−0.0012 (5)
S80.0254 (7)0.0233 (7)0.0202 (7)−0.0050 (5)0.0044 (5)0.0014 (5)
S90.0182 (6)0.0207 (7)0.0214 (6)−0.0037 (5)0.0052 (5)−0.0039 (5)

Geometric parameters (Å, °)

C1—C21.331 (7)C7—S71.752 (5)
C1—S11.758 (5)C7—S61.767 (5)
C1—I12.093 (5)C8—C91.336 (7)
C2—S21.751 (5)C8—S81.755 (5)
C2—I22.074 (5)C8—S61.766 (5)
C3—C41.379 (7)C9—S91.758 (5)
C3—S21.738 (4)C9—S71.766 (5)
C3—S11.739 (5)C10—S81.806 (6)
C4—C51.414 (6)C10—H10A0.9800
C4—S41.769 (5)C10—H10B0.9800
C5—S31.685 (5)C10—H10C0.9800
C5—S51.721 (5)C11—S91.820 (5)
C6—C71.340 (7)C11—H11A0.9800
C6—S51.750 (5)C11—H11B0.9800
C6—S41.758 (5)C11—H11C0.9800
C2—C1—S1117.7 (4)C8—C9—S9126.4 (4)
C2—C1—I1127.1 (4)C8—C9—S7117.3 (4)
S1—C1—I1115.2 (2)S9—C9—S7116.2 (3)
C1—C2—S2116.4 (4)S8—C10—H10A109.5
C1—C2—I2127.5 (4)S8—C10—H10B109.5
S2—C2—I2116.1 (3)H10A—C10—H10B109.5
C4—C3—S2119.2 (4)S8—C10—H10C109.5
C4—C3—S1126.1 (4)H10A—C10—H10C109.5
S2—C3—S1114.7 (3)H10B—C10—H10C109.5
C3—C4—C5125.4 (5)S9—C11—H11A109.5
C3—C4—S4118.4 (4)S9—C11—H11B109.5
C5—C4—S4116.2 (4)H11A—C11—H11B109.5
C4—C5—S3124.2 (4)S9—C11—H11C109.5
C4—C5—S5116.1 (4)H11A—C11—H11C109.5
S3—C5—S5119.8 (3)H11B—C11—H11C109.5
C7—C6—S5124.4 (4)C3—S1—C195.1 (2)
C7—C6—S4121.0 (4)C3—S2—C296.0 (2)
S5—C6—S4114.6 (3)C6—S4—C495.5 (2)
C6—C7—S7125.2 (4)C5—S5—C697.4 (2)
C6—C7—S6120.2 (4)C8—S6—C795.0 (2)
S7—C7—S6114.6 (3)C7—S7—C995.4 (2)
C9—C8—S8124.1 (4)C8—S8—C10101.0 (3)
C9—C8—S6117.5 (4)C9—S9—C1197.8 (2)
S8—C8—S6118.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2627).

References

  • Ahlsen, E. L. & Strømme, K. O. (1974). Acta Chem. Scand. Ser. A, 28, 175–184.
  • Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Sabatini, A., Trogu, E. F. & Vacca, A. (1996). J. Chem. Soc. Dalton Trans. pp. 3583–3589.
  • Bondi, A. (1964). J. Phys. Chem.68, 441-451.
  • Bruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Freemanm, F., Ziller, J. W., Po, H. N. & Keindl, M. C. (1988). J. Am. Chem. Soc.110, 2586–2591.
  • Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T. & Nakazumi, H. (2006). J. Low Temp. Phys.142, 405–408.
  • Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T., Nakazumi, H., Teramura, M., Yokogawa, K., Yasuzuka, S. & Murata, K. (2007). Multifunctional Conducting Molecular Materials, edited by G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz & M. Maesato, pp. 161–164. Cambridge: RSC Publishing.
  • Herbstein, F. H. & Schwortzer, W. (1984). J. Am. Chem. Soc.106, 2367–2373.
  • Hiraoka, T., Kamada, Y., Matsumoto, T., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Nakzumi, H. & Katori, H. A. (2005). J. Mater. Chem.15, 3479–3487.
  • Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Adachi, T., Fujita, H., Yoshino, H., Mizuno, Y., Murata, K. & Shiro, M. (2000). Inorg. Chem.39, 3810–3815. [PubMed]
  • Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. pp. 329–330.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (1996). SADABS University of Götingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, M., Fujiwara, H., Sugimoto, T., Noguchi, S. & Ishida, T. (2005). Inorg. Chem.44, 1184–1186. [PubMed]
  • Wang, M., Xiao, X., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Mori, T. & Katori, H. A. (2007). Inorg. Chem.46, 3049–3056. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography