PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1436.
Published online 2009 October 28. doi:  10.1107/S160053680904344X
PMCID: PMC2970970

Hexaaqua­magnesium(II) bis­[4-(3-pyrid­yl)pyrimidine-2-sulfonate] tetra­hydrate

Abstract

The asymmetric unit of the title compound, [Mg(H2O)6](C9H6N3O3S)2·4H2O, contains half of a centrosymmetric cation, one 4-(3-pyrid­yl)pyrimidin-2-sulfonate anion and two solvent water mol­ecules. Inter­molecular O—H(...)O and O—H(...)N hydrogen bonds link the cations, anions and water mol­ecules into a three-dimensional supra­molecular structure. The crystal packing also exhibits inter­molecular π–π inter­actions between the aromatic rings of the anions with a centroid–centroid distance of 3.604 (2) Å.

Related literature

For coordination complexes with pyridin-2-sulfonate ligands, see: Kimura et al. (1999 [triangle]); Lobana et al. (2004 [triangle]). For coordination complexes with 4-(pyridin-yl)pyrimidin-2-sulfonate, see: Zhu et al. (2007 [triangle]); Fang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1436-scheme1.jpg

Experimental

Crystal data

  • [Mg(H2O)6](C9H6N3O3S)2·4H2O
  • M r = 676.95
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1436-efi1.jpg
  • a = 6.9835 (2) Å
  • b = 13.3600 (3) Å
  • c = 16.2565 (4) Å
  • β = 98.7240 (10)°
  • V = 1499.18 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 291 K
  • 0.30 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.917, T max = 0.966
  • 14712 measured reflections
  • 3438 independent reflections
  • 2848 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.102
  • S = 1.04
  • 3438 reflections
  • 236 parameters
  • 7 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904344X/cv2632sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904344X/cv2632Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (grant No. 20871039) for financial support.

supplementary crystallographic information

Comment

The rational design and synthesis of coordination complexes derived from heterocyclic sulfonate ligands have been of increasing interest recently in chemical research (Kimura et al., 1999; Lobana et al., 2004). In our previous work (Zhu et al., 2007; Fang et al., 2009), we have also studied transition metal coordination complexes with the heterocyclic sulfonate ligands, namely 4-(pyridin-2-yl)pyrimidin-2-sulfonate and 4-(pyridin-4-yl)pyrimidin-2-sulfonate. Herein, we report the magnesium(II) coordination complex with its analog, viz. 4-(pyridin-3-yl)pyrimidin-2-sulfonate.

The asymmetric unit of the title compound (Fig. 1) consists of a 4-(3-pyridyl)pyrimidin-2-sulfonate anion, one half of an [Mg(H2O)6]2+ cation and two free water molecules. The averaged Mg—O coordinating bond length is 2.0664 (13) Å. In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds (Table 1) link cations, anions and crystalline water molecules into three-dimensinal network. The crystal packing exhibits also intermolecular π—π interactions between the aromatic rings of the anions with the centroid-centroid distance of 3.604 (2) Å.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. 4-(3-Pyridyl)pyrimidin-2-sulfonate (L) was prepared by similar procedure reported in the literature (Zhu et al., 2007; Fang et al., 2009). For the synthesis of title compoud, a solution of L (0.1 mmol), MgSO4 (0.1 mmol) in 30 ml methanol was stirred for 1 h at room temperature. After filtration, the mother liguid was stood for one week to give the colourless crystals suitable for X-ray diffraction annalysis.

Refinement

C-bound H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms , with Uiso(H)=1.2Ueq(C). O-bound H atoms were located on a difference map and refined isotropically with the bond restraint O—H = 0.84 (2) Å.

Figures

Fig. 1.
A portion of the crystal structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (A) -1 - x, 1 - y, 1 - z].

Crystal data

[Mg(H2O)6](C9H6N3O3S)2·4H2OF(000) = 708
Mr = 676.95Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15164 reflections
a = 6.9835 (2) Åθ = 2.0–27.5°
b = 13.3600 (3) ŵ = 0.28 mm1
c = 16.2565 (4) ÅT = 291 K
β = 98.724 (1)°Block, colourless
V = 1499.18 (7) Å30.30 × 0.15 × 0.12 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer3438 independent reflections
Radiation source: fine-focus sealed tube2848 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→9
Tmin = 0.917, Tmax = 0.966k = −17→15
14712 measured reflectionsl = −19→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0509P)2 + 0.508P] where P = (Fo2 + 2Fc2)/3
3438 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.23 e Å3
7 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mg10.50000.50000.50000.03117 (19)
S10.05652 (6)0.48762 (3)0.71033 (2)0.03373 (13)
N10.1709 (2)0.47749 (10)0.87143 (9)0.0339 (3)
O1−0.12580 (18)0.43964 (10)0.71840 (8)0.0441 (3)
O20.20815 (19)0.41651 (10)0.70020 (8)0.0484 (3)
N30.3137 (2)0.26720 (11)1.05433 (9)0.0425 (4)
N20.1324 (2)0.64241 (10)0.81545 (9)0.0416 (3)
C40.2220 (2)0.51444 (12)0.94866 (10)0.0320 (3)
C10.1302 (2)0.54365 (12)0.81052 (10)0.0324 (3)
O30.03921 (19)0.56801 (9)0.64992 (8)0.0443 (3)
C90.2743 (3)0.33887 (12)0.99732 (11)0.0380 (4)
H90.24870.32000.94170.046*
C50.2691 (2)0.44024 (12)1.01627 (10)0.0319 (3)
C60.3095 (3)0.46696 (14)1.09979 (10)0.0411 (4)
H60.30840.53391.11550.049*
C80.3510 (3)0.29500 (14)1.13397 (11)0.0448 (4)
H80.37820.24561.17440.054*
C30.2265 (3)0.61758 (13)0.96124 (11)0.0412 (4)
H30.25930.64451.01420.049*
C70.3512 (3)0.39317 (14)1.15898 (11)0.0466 (4)
H70.37920.40961.21510.056*
C20.1811 (3)0.67811 (13)0.89291 (12)0.0465 (4)
H20.18430.74710.90060.056*
O70.4762 (3)0.29673 (14)0.81603 (13)0.0812 (6)
H7A0.407 (5)0.342 (2)0.791 (2)0.137 (15)*
H7B0.438 (5)0.2425 (19)0.793 (2)0.133 (14)*
O60.7440 (2)0.42088 (10)0.48561 (9)0.0445 (3)
O40.5193 (2)0.43705 (11)0.61644 (8)0.0477 (3)
O50.6808 (2)0.61790 (10)0.54696 (9)0.0467 (3)
O80.1251 (4)0.72373 (16)0.14928 (13)0.0869 (6)
H6A0.773 (3)0.3654 (19)0.5094 (15)0.064 (7)*
H6B0.804 (4)0.425 (2)0.4457 (14)0.081 (8)*
H4B0.422 (3)0.4341 (17)0.6427 (14)0.056 (6)*
H5A0.647 (4)0.6623 (18)0.5805 (15)0.088 (9)*
H5B0.786 (3)0.602 (2)0.5755 (16)0.085 (9)*
H4A0.626 (3)0.438 (2)0.6468 (15)0.074 (8)*
H8A0.245 (4)0.717 (2)0.1660 (17)0.072 (9)*
H8B0.055 (6)0.681 (3)0.169 (3)0.168 (19)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mg10.0328 (4)0.0308 (4)0.0295 (4)0.0031 (3)0.0035 (3)0.0025 (3)
S10.0337 (2)0.0357 (2)0.0314 (2)−0.00007 (16)0.00366 (16)0.00238 (16)
N10.0345 (7)0.0317 (7)0.0342 (7)−0.0004 (6)0.0008 (6)0.0002 (6)
O10.0399 (7)0.0520 (7)0.0390 (7)−0.0115 (6)0.0012 (5)−0.0002 (6)
O20.0504 (8)0.0518 (7)0.0445 (7)0.0138 (6)0.0115 (6)0.0012 (6)
N30.0540 (9)0.0327 (7)0.0396 (8)−0.0044 (7)0.0038 (7)0.0016 (6)
N20.0472 (9)0.0315 (7)0.0440 (8)−0.0003 (6)−0.0003 (7)0.0036 (6)
C40.0270 (8)0.0330 (8)0.0357 (8)−0.0004 (6)0.0034 (6)−0.0023 (7)
C10.0271 (8)0.0328 (8)0.0364 (8)−0.0010 (6)0.0018 (6)0.0027 (7)
O30.0493 (7)0.0459 (7)0.0370 (7)0.0006 (6)0.0044 (5)0.0092 (5)
C90.0433 (10)0.0354 (8)0.0337 (8)−0.0031 (7)0.0011 (7)−0.0024 (7)
C50.0287 (8)0.0324 (8)0.0343 (8)−0.0014 (6)0.0037 (6)−0.0014 (6)
C60.0487 (10)0.0363 (9)0.0379 (9)0.0024 (8)0.0057 (8)−0.0060 (7)
C80.0546 (11)0.0429 (9)0.0369 (9)0.0013 (8)0.0067 (8)0.0076 (8)
C30.0481 (10)0.0342 (8)0.0403 (9)−0.0014 (8)0.0038 (8)−0.0056 (7)
C70.0585 (12)0.0504 (10)0.0303 (9)0.0041 (9)0.0051 (8)−0.0025 (8)
C20.0575 (12)0.0285 (8)0.0518 (11)0.0014 (8)0.0026 (9)−0.0022 (8)
O70.1034 (15)0.0525 (10)0.0792 (12)0.0227 (11)−0.0132 (11)−0.0133 (9)
O60.0488 (8)0.0411 (7)0.0463 (8)0.0148 (6)0.0164 (6)0.0104 (6)
O40.0383 (8)0.0696 (9)0.0344 (7)0.0010 (7)0.0025 (6)0.0124 (6)
O50.0434 (8)0.0399 (7)0.0532 (8)0.0009 (6)−0.0044 (7)−0.0073 (6)
O80.1058 (18)0.0780 (13)0.0705 (12)−0.0248 (13)−0.0067 (12)0.0268 (10)

Geometric parameters (Å, °)

Mg1—O62.0487 (13)C5—C61.391 (2)
Mg1—O6i2.0487 (13)C6—C71.378 (3)
Mg1—O42.0570 (13)C6—H60.9300
Mg1—O4i2.0570 (13)C8—C71.373 (3)
Mg1—O5i2.0893 (13)C8—H80.9300
Mg1—O52.0893 (13)C3—C21.372 (3)
S1—O31.4480 (13)C3—H30.9300
S1—O11.4491 (13)C7—H70.9300
S1—O21.4504 (13)C2—H20.9300
S1—C11.7954 (17)O7—H7A0.838 (18)
N1—C11.326 (2)O7—H7B0.837 (19)
N1—C41.346 (2)O6—H6A0.85 (3)
N3—C91.332 (2)O6—H6B0.827 (17)
N3—C81.334 (2)O4—H4B0.85 (2)
N2—C11.322 (2)O4—H4A0.827 (17)
N2—C21.341 (2)O5—H5A0.862 (17)
C4—C31.393 (2)O5—H5B0.837 (17)
C4—C51.480 (2)O8—H8A0.85 (3)
C9—C51.391 (2)O8—H8B0.844 (19)
C9—H90.9300
O6—Mg1—O6i180.00 (8)N3—C9—H9118.1
O6—Mg1—O487.40 (6)C5—C9—H9118.1
O6i—Mg1—O492.60 (6)C9—C5—C6117.26 (16)
O6—Mg1—O4i92.60 (6)C9—C5—C4119.88 (15)
O6i—Mg1—O4i87.40 (6)C6—C5—C4122.86 (15)
O4—Mg1—O4i180.0C7—C6—C5119.23 (16)
O6—Mg1—O5i92.08 (6)C7—C6—H6120.4
O6i—Mg1—O5i87.92 (6)C5—C6—H6120.4
O4—Mg1—O5i88.83 (6)N3—C8—C7122.99 (17)
O4i—Mg1—O5i91.17 (6)N3—C8—H8118.5
O6—Mg1—O587.92 (6)C7—C8—H8118.5
O6i—Mg1—O592.08 (6)C2—C3—C4117.84 (16)
O4—Mg1—O591.17 (6)C2—C3—H3121.1
O4i—Mg1—O588.83 (6)C4—C3—H3121.1
O5i—Mg1—O5180.00 (5)C8—C7—C6119.09 (17)
O3—S1—O1113.91 (8)C8—C7—H7120.5
O3—S1—O2113.33 (8)C6—C7—H7120.5
O1—S1—O2112.78 (8)N2—C2—C3123.04 (16)
O3—S1—C1106.80 (8)N2—C2—H2118.5
O1—S1—C1103.71 (7)C3—C2—H2118.5
O2—S1—C1105.22 (8)H7A—O7—H7B106 (4)
C1—N1—C4116.66 (14)Mg1—O6—H6A122.8 (16)
C9—N3—C8117.68 (15)Mg1—O6—H6B125.8 (19)
C1—N2—C2114.26 (15)H6A—O6—H6B108 (2)
N1—C4—C3119.79 (15)Mg1—O4—H4B122.2 (15)
N1—C4—C5116.42 (14)Mg1—O4—H4A118.0 (19)
C3—C4—C5123.79 (15)H4B—O4—H4A114 (2)
N2—C1—N1128.39 (16)Mg1—O5—H5A122.9 (19)
N2—C1—S1118.06 (13)Mg1—O5—H5B116 (2)
N1—C1—S1113.52 (12)H5A—O5—H5B97 (3)
N3—C9—C5123.75 (16)H8A—O8—H8B114 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O1ii0.83 (2)1.94 (2)2.7650 (19)180 (3)
O4—H4B···O20.86 (2)1.89 (2)2.7475 (19)176 (2)
O5—H5B···O3ii0.83 (2)2.04 (2)2.8705 (19)177 (2)
O5—H5A···O8iii0.86 (2)1.91 (2)2.755 (3)167 (3)
O6—H6B···O3i0.83 (2)2.03 (3)2.8601 (19)178 (2)
O6—H6A···N3iv0.85 (3)1.92 (3)2.763 (2)173 (2)
O7—H7B···O3v0.84 (3)2.51 (3)3.110 (2)130 (3)
O7—H7B···N2v0.84 (3)2.21 (3)2.984 (2)154 (3)
O7—H7A···O20.84 (3)2.12 (3)2.923 (2)161 (3)
O8—H8B···O1vi0.85 (4)2.43 (4)3.064 (2)132 (4)
O8—H8A···O7i0.85 (3)1.93 (3)2.769 (3)170 (3)

Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, −y+3/2, z+1/2; (i) −x+1, −y+1, −z+1; (iv) x+1/2, −y+1/2, z−1/2; (v) −x+1/2, y−1/2, −z+3/2; (vi) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2632).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fang, X. B., Dong, H. Z. & Tian, D. B. (2009). Chin. J. Inorg. Chem.25, 47–53.
  • Kimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497–498.
  • Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356–367.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct.831, 55–60.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography