PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1383–m1384.
Published online 2009 October 17. doi:  10.1107/S1600536809041890
PMCID: PMC2970968

Chloridobis{2-[(dimethyl­amino)­meth­yl]phen­yl}anti­mony(III)

Abstract

In the title compound, [Sb(C9H12N)2Cl], the Sb atom adopts a Ψ-trigonal-bipyramidal geometry. The two 2-[(dimethyl­amino)­methyl]­phenyl ligands are coordinated asymmetrically to the Sb atom. The carbon atoms of one of the ligands are disordered over sets of sites with equal occupancy, resulting in two conformational isomers in the crystal. The Sb—C and Sb—N distances in the ordered ligand are: 2.153 (4) and 3.326 (5) Å, respectively. The corresponding distances in the disordered ligand are: 2.103 (5)/2.188 (5) and 2.454 (3) Å, respectively. The structure displays intra­molecular C—H(...)Cl hydrogen bonding.

Related literature

For the structure of the perdeuterobenzene solvate of the title compound, see: Carmalt et al. (1997 [triangle]). For anti­mony(III) compounds with 2-[(dimethyl­amino)­methyl]­phenyl substituents, see: Kamepalli et al. (1996 [triangle]); Tokunaga et al. (2000a [triangle],b [triangle]); Breunig et al. (2003 [triangle]); Opris et al. (2003 [triangle], 2004 [triangle], 2009 [triangle]); Sharma et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1383-scheme1.jpg

Experimental

Crystal data

  • [Sb(C9H12N)2Cl]
  • M r = 425.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1383-efi1.jpg
  • a = 9.289 (7) Å
  • b = 9.367 (7) Å
  • c = 12.888 (10) Å
  • α = 98.073 (13)°
  • β = 103.611 (13)°
  • γ = 116.819 (12)°
  • V = 932.6 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.62 mm−1
  • T = 297 K
  • 0.33 × 0.31 × 0.27 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.617, T max = 0.669
  • 10065 measured reflections
  • 3801 independent reflections
  • 3530 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.078
  • S = 1.13
  • 3801 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.78 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and WinGX (Farrugia, 1999 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041890/pv2214sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041890/pv2214Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Albert Soran for the crystal selection and measurement and Dr Richard A. Varga for helpful suggestions regarding the disorder refinement. This work was supported by the National University Research Council (CNCSIS) of Romania (research project PNII-ID 2052/2009). MO thanks Babeş-Bolyai University for a research fellowship (14/01.10.2008).

supplementary crystallographic information

Comment

The molecular structure of the perdeuterated benzene solvate of the title compound, (I).C6D6, was first determined by Carmalt et al. (1997). The existence of different enantiomers in the crystal structures of bis[2-(dimethylaminomethyl)phenyl]organoantimony(III) bromide and iodide has been reported (Opris et al., 2003).

In the structure of (I), there are two dimethylaminomethylphenyl ligands that are asymmetrically coordinated to the Sb atom; the Sb atom adopts a Ψ-trigonal-bipyramidal geometry. The ligand containing nitrogen atom N1 was found to be disordered over two positions with s.o.f. of 0.501 (6) (Fig. 1), and 0.499 (6) (Fig. 2) thus resulting in two conformational isomers. Intramolecular hydrogen bonds are present between the chlorine atom and hydrogen atom in position 6 of the organic substituent containing the N1 atom (Table 1).

Bond distances and bond angles in (I) are similar to those reported for the perdeuteraded benzene solvate of the title compound (Carmalt et al., 1997).

Experimental

The title compound was prepared according to a previously described method (Carmalt et al., 1997). Colourless crystals were obtained from a solution in chloroform by slow evaporation of the solvent.

Refinement

The organic group containing N1 was found disordered over two positions. The components of the disorder were refined using a second free-variable. The phenyl groups were refined as rigid groups.

All nonhydrogen atoms were treated anisotropically. Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic and methylene hydrogen atoms, and 1.5 for hydrogen atoms of the methyl groups. The position of the hydrogen atoms of the methyl groups was calculated from the electron density.

Figures

Fig. 1.
Graphical representation of the molecular structure of RN1,SN2-1. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are drawn at 25% probability.
Fig. 2.
Graphical representation of the molecular structure of SN1,SN2-1. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are drawn at 25% probability.

Crystal data

[Sb(C9H12N)2Cl]Z = 2
Mr = 425.60F(000) = 428
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.289 (7) ÅCell parameters from 3906 reflections
b = 9.367 (7) Åθ = 2.5–24.4°
c = 12.888 (10) ŵ = 1.62 mm1
α = 98.073 (13)°T = 297 K
β = 103.611 (13)°Blocks, colourless
γ = 116.819 (12)°0.33 × 0.31 × 0.27 mm
V = 932.6 (13) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer3801 independent reflections
Radiation source: fine-focus sealed tube3530 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→11
Tmin = 0.617, Tmax = 0.669k = −11→11
10065 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.035P)2 + 0.2481P] where P = (Fo2 + 2Fc2)/3
3801 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.7468 (8)0.4324 (9)0.6493 (5)0.047 (6)0.501 (6)
C20.6306 (6)0.2626 (10)0.6213 (6)0.048 (2)0.501 (6)
C30.6832 (9)0.1477 (7)0.5996 (7)0.065 (3)0.501 (6)
H30.60550.0340.58080.078*0.501 (6)
C40.8521 (10)0.2026 (8)0.6058 (7)0.065 (4)0.501 (6)
H40.88730.12570.59130.078*0.501 (6)
C50.9683 (8)0.3724 (8)0.6339 (7)0.067 (2)0.501 (6)
H51.08130.40910.63810.081*0.501 (6)
C60.9156 (8)0.4873 (6)0.6556 (6)0.058 (2)0.501 (6)
H60.99340.6010.67440.069*0.501 (6)
C70.4477 (9)0.2067 (9)0.6097 (6)0.055 (2)0.501 (6)
H7A0.38640.20570.53720.065*0.501 (6)
H7B0.39130.09520.61810.065*0.501 (6)
C80.2676 (10)0.3037 (11)0.6608 (8)0.074 (3)0.501 (6)
H8A0.24160.31830.58770.111*0.501 (6)
H8B0.26190.38440.7120.111*0.501 (6)
H8C0.18590.19330.65890.111*0.501 (6)
C90.4842 (13)0.2998 (11)0.8043 (7)0.069 (3)0.501 (6)
H9A0.3910.19530.80180.104*0.501 (6)
H9B0.4950.38820.8590.104*0.501 (6)
H9C0.58860.29630.82380.104*0.501 (6)
C1A0.7522 (8)0.4295 (8)0.6416 (5)0.042 (5)0.499 (6)
C2A0.6821 (9)0.2798 (10)0.6685 (5)0.048 (2)0.499 (6)
C3A0.7282 (10)0.1620 (8)0.6387 (7)0.056 (3)0.499 (6)
H3A0.68130.06180.65680.067*0.499 (6)
C4A0.8444 (10)0.1940 (7)0.5819 (7)0.068 (4)0.499 (6)
H4A0.87520.11520.5620.081*0.499 (6)
C5A0.9145 (7)0.3438 (8)0.5549 (6)0.060 (2)0.499 (6)
H5A0.99220.36520.51690.072*0.499 (6)
C6A0.8684 (7)0.4615 (6)0.5847 (6)0.0510 (19)0.499 (6)
H6A0.91530.56170.56670.061*0.499 (6)
C7A0.5589 (10)0.2447 (9)0.7299 (7)0.057 (2)0.499 (6)
H7A10.62090.28620.80930.068*0.499 (6)
H7A20.48350.12510.71150.068*0.499 (6)
C8A0.3298 (10)0.2411 (10)0.5935 (7)0.064 (2)0.499 (6)
H8A10.24380.13540.59540.096*0.499 (6)
H8A20.38390.22350.54210.096*0.499 (6)
H8A30.27730.30440.57020.096*0.499 (6)
C9A0.3800 (12)0.3423 (11)0.7886 (7)0.070 (3)0.499 (6)
H9A10.31750.39970.77350.105*0.499 (6)
H9A20.47150.40340.85870.105*0.499 (6)
H9A30.30430.23270.79150.105*0.499 (6)
C100.7798 (4)0.6853 (4)0.8586 (3)0.0469 (8)
C110.7516 (5)0.7975 (4)0.9215 (3)0.0555 (9)
C120.8347 (6)0.8557 (5)1.0355 (3)0.0677 (11)
H120.8180.93211.0780.081*
C130.9393 (6)0.8043 (6)1.0865 (3)0.0768 (14)
H130.99080.84211.16350.092*
C140.9696 (5)0.6964 (6)1.0246 (4)0.0748 (13)
H141.04410.66321.05950.09*
C150.8894 (5)0.6365 (5)0.9100 (3)0.0606 (10)
H150.91010.56310.86810.073*
C160.6406 (6)0.8609 (5)0.8671 (4)0.0683 (11)
H16A0.65360.95230.92170.082*
H16B0.67890.90410.80860.082*
C170.3876 (7)0.6916 (8)0.9063 (5)0.1067 (18)
H17A0.44410.64560.95080.16*
H17B0.26760.61110.87280.16*
H17C0.40230.79030.95260.16*
C180.3679 (9)0.7882 (9)0.7445 (6)0.133 (3)
H18A0.37490.88670.7850.199*
H18B0.250.70140.71160.199*
H18C0.4170.81270.6870.199*
N10.4519 (4)0.3284 (4)0.6993 (2)0.0517 (7)
N20.4613 (5)0.7338 (5)0.8199 (3)0.0714 (9)
Sb10.65485 (3)0.59640 (3)0.680735 (17)0.04391 (10)
Cl10.92046 (15)0.84267 (12)0.66663 (9)0.0677 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.044 (12)0.053 (13)0.038 (9)0.024 (11)0.009 (9)0.004 (8)
C20.056 (5)0.042 (4)0.040 (5)0.026 (4)0.009 (4)0.003 (4)
C30.093 (8)0.052 (6)0.058 (7)0.043 (6)0.023 (6)0.015 (4)
C40.097 (12)0.063 (9)0.057 (6)0.061 (9)0.020 (6)0.013 (5)
C50.070 (6)0.077 (6)0.068 (6)0.045 (5)0.031 (5)0.016 (5)
C60.062 (5)0.061 (5)0.059 (5)0.035 (4)0.026 (5)0.022 (4)
C70.054 (5)0.042 (4)0.052 (4)0.018 (3)0.011 (3)0.005 (3)
C80.045 (4)0.063 (5)0.090 (7)0.015 (4)0.018 (4)0.008 (5)
C90.085 (7)0.057 (5)0.057 (5)0.026 (5)0.028 (5)0.021 (4)
C1A0.056 (14)0.038 (11)0.038 (9)0.028 (10)0.016 (9)0.013 (7)
C2A0.045 (5)0.045 (5)0.048 (6)0.021 (4)0.008 (4)0.012 (4)
C3A0.054 (5)0.036 (4)0.068 (8)0.021 (4)0.011 (5)0.011 (4)
C4A0.050 (8)0.069 (10)0.072 (7)0.034 (7)0.006 (5)−0.003 (5)
C5A0.047 (4)0.057 (5)0.070 (6)0.024 (4)0.022 (4)0.005 (4)
C6A0.045 (4)0.053 (4)0.053 (5)0.024 (4)0.013 (4)0.014 (4)
C7A0.060 (5)0.049 (4)0.064 (5)0.025 (4)0.024 (4)0.025 (4)
C8A0.057 (5)0.048 (4)0.066 (5)0.016 (4)0.014 (4)0.004 (4)
C9A0.076 (6)0.070 (6)0.063 (5)0.028 (5)0.040 (5)0.020 (4)
C100.0482 (18)0.0412 (18)0.0354 (17)0.0122 (15)0.0117 (14)0.0073 (14)
C110.061 (2)0.0398 (18)0.0454 (19)0.0094 (17)0.0221 (17)0.0055 (15)
C120.066 (3)0.055 (2)0.052 (2)0.008 (2)0.025 (2)0.0036 (19)
C130.067 (3)0.081 (3)0.0329 (19)0.005 (2)0.0127 (19)−0.001 (2)
C140.060 (3)0.086 (3)0.056 (3)0.025 (2)0.004 (2)0.022 (2)
C150.056 (2)0.066 (2)0.046 (2)0.025 (2)0.0093 (17)0.0096 (18)
C160.101 (3)0.048 (2)0.066 (3)0.041 (2)0.040 (2)0.0163 (19)
C170.100 (4)0.128 (5)0.122 (5)0.066 (4)0.067 (4)0.039 (4)
C180.146 (6)0.149 (6)0.161 (7)0.114 (5)0.044 (5)0.077 (5)
N10.0538 (17)0.0515 (17)0.0482 (17)0.0244 (15)0.0207 (14)0.0115 (14)
N20.078 (2)0.076 (2)0.083 (3)0.050 (2)0.036 (2)0.034 (2)
Sb10.05461 (16)0.04224 (14)0.03608 (14)0.02685 (12)0.01251 (10)0.01049 (9)
Cl10.0829 (7)0.0465 (5)0.0674 (6)0.0227 (5)0.0340 (6)0.0182 (5)

Geometric parameters (Å, °)

C1—C21.39C7A—H7A10.97
C1—C61.39C7A—H7A20.97
C1—Sb12.103 (5)C8A—N11.391 (8)
C2—C31.39C8A—H8A10.96
C2—C71.496 (9)C8A—H8A20.96
C3—C41.39C8A—H8A30.96
C3—H30.93C9A—N11.479 (9)
C4—C51.39C9A—H9A10.96
C4—H40.93C9A—H9A20.96
C5—C61.39C9A—H9A30.96
C5—H50.93C10—C151.369 (5)
C6—H60.93C10—C111.393 (5)
C7—N11.484 (8)C10—Sb12.153 (4)
C7—H7A0.97C11—C121.383 (5)
C7—H7B0.97C11—C161.496 (6)
C8—N11.563 (9)C12—C131.348 (7)
C8—H8A0.96C12—H120.93
C8—H8B0.96C13—C141.368 (7)
C8—H8C0.96C13—H130.93
C9—N11.406 (8)C14—C151.387 (6)
C9—H9A0.96C14—H140.93
C9—H9B0.96C15—H150.93
C9—H9C0.96C16—N21.446 (6)
C1A—C2A1.39C16—H16A0.97
C1A—C6A1.39C16—H16B0.97
C1A—Sb12.188 (5)C17—N21.451 (6)
C2A—C3A1.39C17—H17A0.96
C2A—C7A1.484 (9)C17—H17B0.96
C3A—C4A1.39C17—H17C0.96
C3A—H3A0.93C18—N21.448 (6)
C4A—C5A1.39C18—H18A0.96
C4A—H4A0.93C18—H18B0.96
C5A—C6A1.39C18—H18C0.96
C5A—H5A0.93N1—Sb12.454 (3)
C6A—H6A0.93N2—Sb13.326 (5)
C7A—N11.537 (8)Sb1—Cl12.5759 (18)
C2—C1—C6120C12—C11—C10118.7 (4)
C2—C1—Sb1117.2 (4)C12—C11—C16120.2 (4)
C6—C1—Sb1122.8 (4)C10—C11—C16121.0 (3)
C3—C2—C1120C13—C12—C11121.5 (4)
C3—C2—C7121.1 (6)C13—C12—H12119.2
C1—C2—C7118.9 (6)C11—C12—H12119.2
C4—C3—C2120C12—C13—C14119.8 (4)
C4—C3—H3120C12—C13—H13120.1
C2—C3—H3120C14—C13—H13120.1
C5—C4—C3120C13—C14—C15120.2 (4)
C5—C4—H4120C13—C14—H14119.9
C3—C4—H4120C15—C14—H14119.9
C6—C5—C4120C10—C15—C14120.0 (4)
C6—C5—H5120C10—C15—H15120
C4—C5—H5120C14—C15—H15120
C5—C6—C1120N2—C16—C11112.9 (3)
C5—C6—H6120N2—C16—H16A109
C1—C6—H6120C11—C16—H16A109
N1—C7—C2106.2 (5)N2—C16—H16B109
N1—C7—H7A110.5C11—C16—H16B109
C2—C7—H7A110.5H16A—C16—H16B107.8
N1—C7—H7B110.5N2—C17—H17A109.5
C2—C7—H7B110.5N2—C17—H17B109.5
H7A—C7—H7B108.7H17A—C17—H17B109.5
N1—C8—H8A109.5N2—C17—H17C109.5
N1—C8—H8B109.5H17A—C17—H17C109.5
N1—C8—H8C109.5H17B—C17—H17C109.5
N1—C9—H9A109.5N2—C18—H18A109.5
N1—C9—H9B109.5N2—C18—H18B109.5
N1—C9—H9C109.5H18A—C18—H18B109.5
C2A—C1A—C6A120N2—C18—H18C109.5
C2A—C1A—Sb1116.7 (4)H18A—C18—H18C109.5
C6A—C1A—Sb1123.1 (4)H18B—C18—H18C109.5
C3A—C2A—C1A120C8A—N1—C9137.0 (6)
C3A—C2A—C7A119.5 (6)C8A—N1—C9A114.3 (6)
C1A—C2A—C7A120.5 (6)C9—N1—C9A48.6 (5)
C2A—C3A—C4A120C8A—N1—C751.7 (5)
C2A—C3A—H3A120C9—N1—C7114.1 (6)
C4A—C3A—H3A120C9A—N1—C7143.2 (5)
C5A—C4A—C3A120C8A—N1—C7A110.2 (5)
C5A—C4A—H4A120C9—N1—C7A59.8 (5)
C3A—C4A—H4A120C9A—N1—C7A107.8 (6)
C6A—C5A—C4A120C7—N1—C7A61.0 (4)
C6A—C5A—H5A120C8A—N1—C854.1 (5)
C4A—C5A—H5A120C9—N1—C8108.4 (6)
C5A—C6A—C1A120C9A—N1—C864.2 (6)
C5A—C6A—H6A120C7—N1—C8104.2 (5)
C1A—C6A—H6A120C7A—N1—C8145.7 (5)
C2A—C7A—N1110.5 (5)C8A—N1—Sb1105.1 (4)
C2A—C7A—H7A1109.5C9—N1—Sb1117.9 (4)
N1—C7A—H7A1109.5C9A—N1—Sb1114.6 (4)
C2A—C7A—H7A2109.5C7—N1—Sb1102.2 (3)
N1—C7A—H7A2109.5C7A—N1—Sb1104.3 (3)
H7A1—C7A—H7A2108.1C8—N1—Sb1109.2 (4)
N1—C8A—H8A1109.5C16—N2—C18110.2 (4)
N1—C8A—H8A2109.5C16—N2—C17111.2 (4)
H8A1—C8A—H8A2109.5C18—N2—C17110.9 (5)
N1—C8A—H8A3109.5C1—Sb1—C1096.9 (2)
H8A1—C8A—H8A3109.5C1—Sb1—C1A2.6 (3)
H8A2—C8A—H8A3109.5C10—Sb1—C1A98.77 (18)
N1—C9A—H9A1109.5C1—Sb1—N173.2 (2)
N1—C9A—H9A2109.5C10—Sb1—N189.75 (12)
H9A1—C9A—H9A2109.5C1A—Sb1—N175.0 (2)
N1—C9A—H9A3109.5C1—Sb1—Cl191.9 (2)
H9A1—C9A—H9A3109.5C10—Sb1—Cl187.61 (10)
H9A2—C9A—H9A3109.5C1A—Sb1—Cl190.3 (2)
C15—C10—C11119.7 (3)N1—Sb1—Cl1164.43 (8)
C15—C10—Sb1121.0 (3)N2—Sb1—Cl1110.65 (8)
C11—C10—Sb1119.3 (3)
C6—C1—C2—C30C11—C16—N2—C18−165.1 (4)
Sb1—C1—C2—C3180.0 (5)C11—C16—N2—C1771.6 (5)
C6—C1—C2—C7−177.0 (7)C2—C1—Sb1—C10106.9 (4)
Sb1—C1—C2—C73.0 (7)C6—C1—Sb1—C10−73.1 (4)
C1—C2—C3—C40C2—C1—Sb1—C1A−114 (7)
C7—C2—C3—C4177.0 (7)C6—C1—Sb1—C1A66 (7)
C2—C3—C4—C50C2—C1—Sb1—N119.3 (4)
C3—C4—C5—C60C6—C1—Sb1—N1−160.7 (4)
C4—C5—C6—C10C2—C1—Sb1—Cl1−165.3 (4)
C2—C1—C6—C50C6—C1—Sb1—Cl114.7 (4)
Sb1—C1—C6—C5180.0 (5)C15—C10—Sb1—C14.3 (4)
C3—C2—C7—N1144.3 (5)C11—C10—Sb1—C1−177.3 (3)
C1—C2—C7—N1−38.6 (8)C15—C10—Sb1—C1A2.6 (4)
C6A—C1A—C2A—C3A0C11—C10—Sb1—C1A−179.0 (3)
Sb1—C1A—C2A—C3A175.2 (4)C15—C10—Sb1—N177.3 (3)
C6A—C1A—C2A—C7A179.6 (7)C11—C10—Sb1—N1−104.3 (3)
Sb1—C1A—C2A—C7A−5.2 (7)C15—C10—Sb1—Cl1−87.3 (3)
C1A—C2A—C3A—C4A0C11—C10—Sb1—Cl191.1 (3)
C7A—C2A—C3A—C4A−179.6 (7)C2A—C1A—Sb1—C133 (7)
C2A—C3A—C4A—C5A0C6A—C1A—Sb1—C1−152 (7)
C3A—C4A—C5A—C6A0C2A—C1A—Sb1—C1074.1 (3)
C4A—C5A—C6A—C1A0C6A—C1A—Sb1—C10−110.8 (4)
C2A—C1A—C6A—C5A0C2A—C1A—Sb1—N1−13.3 (3)
Sb1—C1A—C6A—C5A−174.9 (5)C6A—C1A—Sb1—N1161.8 (4)
C3A—C2A—C7A—N1−148.5 (4)C2A—C1A—Sb1—Cl1161.7 (3)
C1A—C2A—C7A—N131.9 (8)C6A—C1A—Sb1—Cl1−23.2 (4)
C15—C10—C11—C12−0.6 (5)C8A—N1—Sb1—C1−90.6 (5)
Sb1—C10—C11—C12−179.0 (3)C9—N1—Sb1—C188.5 (6)
C15—C10—C11—C16176.5 (4)C9A—N1—Sb1—C1143.0 (5)
Sb1—C10—C11—C16−1.9 (5)C7—N1—Sb1—C1−37.4 (4)
C10—C11—C12—C13−1.1 (6)C7A—N1—Sb1—C125.4 (4)
C16—C11—C12—C13−178.2 (4)C8—N1—Sb1—C1−147.3 (5)
C11—C12—C13—C142.2 (6)C8A—N1—Sb1—C10172.1 (4)
C12—C13—C14—C15−1.7 (7)C9—N1—Sb1—C10−8.7 (5)
C11—C10—C15—C141.1 (6)C9A—N1—Sb1—C1045.8 (5)
Sb1—C10—C15—C14179.5 (3)C7—N1—Sb1—C10−134.6 (4)
C13—C14—C15—C100.1 (6)C7A—N1—Sb1—C10−71.8 (4)
C12—C11—C16—N2−113.5 (4)C8—N1—Sb1—C10115.5 (4)
C10—C11—C16—N269.5 (5)C8A—N1—Sb1—C1A−88.7 (4)
C2—C7—N1—C8A147.4 (8)C9—N1—Sb1—C1A90.4 (6)
C2—C7—N1—C9−80.7 (7)C9A—N1—Sb1—C1A145.0 (5)
C2—C7—N1—C9A−133.0 (9)C7—N1—Sb1—C1A−35.5 (4)
C2—C7—N1—C7A−52.1 (6)C7A—N1—Sb1—C1A27.3 (4)
C2—C7—N1—C8161.3 (6)C8—N1—Sb1—C1A−145.4 (4)
C2—C7—N1—Sb147.7 (6)C8A—N1—Sb1—Cl1−107.7 (5)
C2A—C7A—N1—C8A74.7 (7)C9—N1—Sb1—Cl171.4 (6)
C2A—C7A—N1—C9−151.9 (8)C9A—N1—Sb1—Cl1126.0 (5)
C2A—C7A—N1—C9A−159.9 (6)C7—N1—Sb1—Cl1−54.5 (5)
C2A—C7A—N1—C758.5 (6)C7A—N1—Sb1—Cl18.3 (5)
C2A—C7A—N1—C8130.0 (9)C8—N1—Sb1—Cl1−164.4 (4)
C2A—C7A—N1—Sb1−37.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.932.653.291 (7)127
C6A—H6A···Cl10.932.743.353 (7)125

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2214).

References

  • Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Breunig, H. J., Ghesner, I., Ghesner, M. E. & Lork, E. (2003). Inorg. Chem.42, 1751–1757. [PubMed]
  • Bruker (2000). SMART and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carmalt, C. J., Cowley, A. H., Culp, R. D., Jones, R. A., Kamepalli, S. & Norman, N. C. (1997). Inorg. Chem.36, 2770–2776. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kamepalli, S., Carmalt, C. J., Culp, R. D., Cowley, A. H., Jones, R. A. & Norman, N. C. (1996). Inorg. Chem.35, 6179–6183.
  • Opris, L. M., Preda, A. M., Varga, R. A., Breunig, H. J. & Silvestru, C. (2009). Eur. J. Inorg. Chem. pp. 1187–1193.
  • Opris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2003). Dalton Trans. pp. 4367–4374.
  • Opris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2004). Dalton Trans. pp. 3575–3585. [PubMed]
  • Sharma, P., Castillo, D., Rosas, N., Cabrera, A., Gomez, E., Toscano, A., Lara, F., Hernández, S. & Espinosa, G. (2004). J. Organomet. Chem.689, 2593–2600.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tokunaga, T., Seki, H., Yasuike, S., Ikoma, M., Kurita, J. & Yamaguchi, K. (2000a). Tetrahedron, 56, 8833–8839.
  • Tokunaga, T., Seki, H., Yasuike, S., Ikoma, M., Kurita, J. & Yamaguchi, K. (2000b). Tetrahedron Lett.41, 1031–1034.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography