PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2861.
Published online 2009 October 28. doi:  10.1107/S1600536809043608
PMCID: PMC2970967

(S)-3-[(S,E)-4-(4-Chloro­phen­yl)-1-nitro­but-3-en-2-yl]thian-4-one

Abstract

The title compound, C15H16ClNO3S, was obtained by the organocatalytic asymmetric Michael addition of thian-4-one to 1-chloro-4-[(1E,3E)-4-nitro­buta-1,3-dien­yl]benzene. The double bond has an E configuration and the thian-4-one six-membered ring adopts a chair conformation. The crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For asymmetric Michael addition employing chiral organo­catalysts, see: Belot et al. (2008 [triangle]); Dalko & Moisan (2004 [triangle]); Xu et al. (2008 [triangle]); Yu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2861-scheme1.jpg

Experimental

Crystal data

  • C15H16ClNO3S
  • M r = 325.80
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2861-efi1.jpg
  • a = 5.5220 (2) Å
  • b = 8.3833 (3) Å
  • c = 34.7414 (12) Å
  • V = 1608.27 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 296 K
  • 0.34 × 0.28 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.865, T max = 0.932
  • 15960 measured reflections
  • 3666 independent reflections
  • 2918 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.090
  • S = 1.00
  • 3666 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1501 Friedel pairs
  • Flack parameter: 0.03 (7)

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043608/fk2005sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043608/fk2005Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the help of Professor Jianming Gu of Zhejiang University. We are also grateful for financial support from the Catalytic Hydrogenation Research Center of Zhejiang University of Technology.

supplementary crystallographic information

Comment

As one of the most important chiral carbon-carbon bond-forming processes in modern organic chemistry, the field of asymmetric Michael addition employing chiral organocatalysts has gained more and more attention and become the focus of intense research efforts (Dalko & Moisan, 2004; Belot et al., 2008; Yu et al., 2009). Consequently, we have synthesized a series of Michael adducts by employing cyclo-ketones to nitrodienes in our laboratory. We report here the crystal structure and the absolute configuration of the title compound, (I). The six-membered ring of thian-4-one adopts a chair conformation. The C8═C9 bond involves the E configuration with the C6—C8—C9—C10 torsion angle of 178.1 (17)°. The conformation of (I) is stabilized by weak intermolecular C7—H7B···O2 and C2—H2B···O1 interaction, Table 1, Fig 2.

Experimental

A 1,2-dichloroethane (0.5 ml) solution of thian-4-one (0.25 mmol) and 1-chloro-4-((1E,3E)-4-nitrobuta-1,3-dienyl)benzene (0.25 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.025 mmol) as amine catalyst and (R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-2-phenylacetic acid (0.025 mmol) as acid module at room tempreture was stirred vigorously (Xu et al., 2008). After completion of the reaction, the resulted reaction mixture was purified directly by silica gel column chromatography (eluent: petroleum ether-EtOAc). Single crystals were obtained by slow evaporation of an ethanol-EtOAc solution.

Refinement

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.98 Å (sp2), C—H = 0.97 Å (sp3) and refined using a riding model, with Uiso(H)=1.2eq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The view of intermolecular interaction illustrated as dash lines.

Crystal data

C15H16ClNO3SF(000) = 680
Mr = 325.80Dx = 1.346 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12670 reflections
a = 5.5220 (2) Åθ = 3.0–27.5°
b = 8.3833 (3) ŵ = 0.38 mm1
c = 34.7414 (12) ÅT = 296 K
V = 1608.27 (10) Å3Block, colorless
Z = 40.34 × 0.28 × 0.19 mm

Data collection

Rigaku R-AXIS RAPID diffractometer3666 independent reflections
Radiation source: rotating anode2918 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −7→6
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −10→10
Tmin = 0.865, Tmax = 0.932l = −45→45
15960 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032w = 1/[σ2(Fo2) + (0.047P)2 + 0.182P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.16 e Å3
3666 reflectionsΔρmin = −0.20 e Å3
191 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0061 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1501 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.03 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C13−0.1203 (6)0.9836 (3)0.01706 (6)0.0747 (7)
S10.55221 (10)0.17716 (7)0.117335 (15)0.06690 (17)
Cl1−0.1215 (2)1.11399 (9)−0.022097 (18)0.1245 (4)
C60.0659 (3)0.5010 (2)0.16547 (4)0.0447 (4)
H6−0.08770.44290.16340.054*
O10.0671 (3)0.22754 (16)0.21132 (4)0.0613 (3)
C40.2745 (3)0.3803 (2)0.16338 (4)0.0444 (4)
H40.42640.43710.16840.053*
N1−0.1196 (3)0.7113 (2)0.20576 (4)0.0555 (4)
C50.2912 (4)0.3026 (2)0.12328 (5)0.0555 (4)
H5A0.29540.38590.10390.067*
H5B0.14660.23940.11890.067*
C80.0775 (3)0.6222 (2)0.13348 (5)0.0476 (4)
H80.21890.68160.13100.057*
C70.0736 (3)0.5865 (2)0.20462 (5)0.0496 (4)
H7A0.04810.51010.22520.059*
H7B0.23090.63560.20830.059*
C30.2507 (3)0.2460 (2)0.19269 (5)0.0492 (4)
C9−0.0980 (3)0.6500 (2)0.10879 (5)0.0522 (4)
H9−0.23570.58690.11130.063*
O3−0.0587 (3)0.84976 (18)0.20651 (5)0.0819 (5)
C20.4615 (4)0.1319 (3)0.19524 (6)0.0669 (5)
H2A0.43150.05500.21550.080*
H2B0.60730.19060.20170.080*
C150.0781 (4)0.8818 (2)0.07241 (5)0.0631 (5)
H150.20760.88470.08950.076*
O2−0.3289 (3)0.6674 (2)0.20483 (5)0.0838 (5)
C10−0.1020 (3)0.7694 (2)0.07758 (5)0.0519 (4)
C10.4989 (5)0.0446 (3)0.15734 (6)0.0757 (6)
H1A0.3568−0.01960.15190.091*
H1B0.6359−0.02700.15990.091*
C11−0.2923 (4)0.7687 (3)0.05161 (6)0.0691 (6)
H11−0.41690.69510.05470.083*
C12−0.3010 (5)0.8756 (3)0.02114 (6)0.0819 (7)
H12−0.42910.87320.00380.098*
C140.0704 (5)0.9901 (3)0.04238 (6)0.0745 (6)
H140.19201.06580.03940.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C130.122 (2)0.0560 (12)0.0463 (9)0.0278 (14)−0.0102 (12)0.0075 (8)
S10.0674 (3)0.0707 (3)0.0626 (3)0.0147 (3)0.0095 (2)−0.0069 (2)
Cl10.2253 (11)0.0834 (4)0.0646 (3)0.0384 (6)−0.0194 (5)0.0284 (3)
C60.0489 (8)0.0463 (8)0.0387 (7)−0.0005 (8)0.0019 (8)0.0031 (6)
O10.0645 (8)0.0616 (8)0.0578 (7)−0.0018 (7)0.0091 (7)0.0157 (6)
C40.0466 (8)0.0457 (9)0.0410 (8)−0.0008 (7)0.0026 (7)0.0035 (7)
N10.0581 (9)0.0606 (10)0.0478 (8)0.0061 (8)−0.0027 (7)−0.0059 (7)
C50.0667 (10)0.0568 (11)0.0428 (8)0.0090 (9)0.0022 (8)0.0012 (8)
C80.0539 (10)0.0429 (8)0.0460 (8)0.0007 (8)0.0025 (8)0.0031 (7)
C70.0516 (9)0.0514 (10)0.0457 (8)0.0085 (8)−0.0046 (8)−0.0011 (7)
C30.0569 (10)0.0486 (10)0.0420 (8)0.0003 (8)−0.0041 (8)0.0029 (7)
C90.0555 (10)0.0536 (10)0.0475 (9)−0.0008 (9)0.0003 (8)0.0036 (7)
O30.1031 (12)0.0509 (9)0.0918 (11)0.0066 (9)−0.0103 (10)−0.0046 (8)
C20.0719 (12)0.0675 (13)0.0615 (11)0.0137 (11)−0.0082 (10)0.0124 (9)
C150.0780 (13)0.0597 (11)0.0516 (10)−0.0048 (11)−0.0136 (10)0.0107 (8)
O20.0491 (8)0.1071 (13)0.0954 (11)0.0053 (9)0.0029 (7)−0.0237 (11)
C100.0614 (10)0.0519 (10)0.0423 (8)0.0094 (9)−0.0049 (8)0.0009 (7)
C10.0906 (16)0.0619 (13)0.0746 (13)0.0252 (12)−0.0040 (12)0.0032 (10)
C110.0678 (12)0.0778 (15)0.0618 (11)0.0038 (11)−0.0150 (10)0.0045 (10)
C120.0969 (18)0.0897 (18)0.0590 (11)0.0216 (16)−0.0267 (12)0.0023 (12)
C140.1063 (17)0.0566 (11)0.0606 (11)−0.0037 (14)−0.0062 (13)0.0150 (9)

Geometric parameters (Å, °)

C13—C121.355 (4)C8—H80.9300
C13—C141.373 (4)C7—H7A0.9700
C13—Cl11.745 (2)C7—H7B0.9700
S1—C51.7959 (19)C3—C21.509 (3)
S1—C11.804 (2)C9—C101.476 (2)
C6—C81.507 (2)C9—H90.9300
C6—C41.534 (2)C2—C11.520 (3)
C6—C71.539 (2)C2—H2A0.9700
C6—H60.9800C2—H2B0.9700
O1—C31.213 (2)C15—C101.382 (3)
C4—C31.524 (2)C15—C141.383 (3)
C4—C51.541 (2)C15—H150.9300
C4—H40.9800C10—C111.385 (3)
N1—O31.209 (2)C1—H1A0.9700
N1—O21.213 (2)C1—H1B0.9700
N1—C71.494 (2)C11—C121.388 (3)
C5—H5A0.9700C11—H110.9300
C5—H5B0.9700C12—H120.9300
C8—C91.315 (3)C14—H140.9300
C12—C13—C14121.62 (19)O1—C3—C2122.19 (16)
C12—C13—Cl1119.81 (19)O1—C3—C4121.53 (16)
C14—C13—Cl1118.5 (2)C2—C3—C4116.17 (15)
C5—S1—C198.11 (10)C8—C9—C10127.61 (17)
C8—C6—C4112.19 (13)C8—C9—H9116.2
C8—C6—C7109.65 (14)C10—C9—H9116.2
C4—C6—C7109.17 (13)C3—C2—C1111.04 (16)
C8—C6—H6108.6C3—C2—H2A109.4
C4—C6—H6108.6C1—C2—H2A109.4
C7—C6—H6108.6C3—C2—H2B109.4
C3—C4—C6113.01 (13)C1—C2—H2B109.4
C3—C4—C5107.25 (14)H2A—C2—H2B108.0
C6—C4—C5111.50 (13)C10—C15—C14121.53 (19)
C3—C4—H4108.3C10—C15—H15119.2
C6—C4—H4108.3C14—C15—H15119.2
C5—C4—H4108.3C11—C10—C15117.69 (18)
O3—N1—O2123.82 (19)C11—C10—C9119.13 (18)
O3—N1—C7118.28 (17)C15—C10—C9123.17 (16)
O2—N1—C7117.86 (18)C2—C1—S1113.15 (17)
C4—C5—S1113.56 (12)C2—C1—H1A108.9
C4—C5—H5A108.9S1—C1—H1A108.9
S1—C5—H5A108.9C2—C1—H1B108.9
C4—C5—H5B108.9S1—C1—H1B108.9
S1—C5—H5B108.9H1A—C1—H1B107.8
H5A—C5—H5B107.7C10—C11—C12121.3 (2)
C9—C8—C6124.67 (17)C10—C11—H11119.3
C9—C8—H8117.7C12—C11—H11119.3
C6—C8—H8117.7C13—C12—C11119.1 (2)
N1—C7—C6109.27 (13)C13—C12—H12120.5
N1—C7—H7A109.8C11—C12—H12120.5
C6—C7—H7A109.8C13—C14—C15118.7 (2)
N1—C7—H7B109.8C13—C14—H14120.6
C6—C7—H7B109.8C15—C14—H14120.6
H7A—C7—H7B108.3
C8—C6—C4—C3−173.58 (14)C6—C8—C9—C10178.10 (17)
C7—C6—C4—C364.67 (18)O1—C3—C2—C1114.2 (2)
C8—C6—C4—C5−52.68 (19)C4—C3—C2—C1−62.0 (2)
C7—C6—C4—C5−174.43 (14)C14—C15—C10—C11−0.1 (3)
C3—C4—C5—S1−62.42 (17)C14—C15—C10—C9178.8 (2)
C6—C4—C5—S1173.37 (12)C8—C9—C10—C11172.61 (19)
C1—S1—C5—C456.38 (16)C8—C9—C10—C15−6.3 (3)
C4—C6—C8—C9123.85 (19)C3—C2—C1—S158.3 (2)
C7—C6—C8—C9−114.67 (19)C5—S1—C1—C2−53.16 (18)
O3—N1—C7—C6−112.49 (18)C15—C10—C11—C120.8 (3)
O2—N1—C7—C665.5 (2)C9—C10—C11—C12−178.2 (2)
C8—C6—C7—N153.18 (19)C14—C13—C12—C11−0.2 (4)
C4—C6—C7—N1176.45 (14)Cl1—C13—C12—C11177.53 (19)
C6—C4—C3—O19.8 (2)C10—C11—C12—C13−0.6 (4)
C5—C4—C3—O1−113.44 (18)C12—C13—C14—C150.9 (4)
C6—C4—C3—C2−173.94 (15)Cl1—C13—C14—C15−176.91 (18)
C5—C4—C3—C262.78 (19)C10—C15—C14—C13−0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.972.453.368 (4)158
C2—H2B···O1i0.972.583.484 (3)156

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2005).

References

  • Belot, S., Massaro, A., Tenti, A., Mordini, A. & Alexakis, A. (2008). Org. Lett.10, 4557–4560. [PubMed]
  • Dalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed.43, 5138–5175. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlaands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, D., Yue, H., Luo, S., Xia, A., Zhang, S. & Xu, Z. (2008). Org. Biomol. Chem.6, 2054–2057. [PubMed]
  • Yu, Z., Liu, X., Zhou, L., Lin, L. & Feng, X. (2009). Angew. Chem. Int. Ed.48, 5195–5198. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography