PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2678.
Published online 2009 October 10. doi:  10.1107/S1600536809040434
PMCID: PMC2970965

2-(1,3-Dioxoisoindolin-2-yl)propanoic acid

Abstract

The crystal structure of the title compound, C11H9NO4, consists of infinite one-dimensional polymeric chains due to inter­molecular O—H(...)O hydrogen bonds between the carboxyl­ate and carbonyl groups. The phthalimide ring system and the C—COO group are planar, with r.m.s. deviations of 0.0253 and 0.0067 Å, respectively, from their mean square planes and the dihedral angle between them is 66.41 (7)°. The mol­ecules are stabilized by C=O(...)π inter­actions and weak intra­molecular C—H(...)O hydrogen bonds.

Related literature

For the medicinal properties of isocoumarin, see: Matsuda et al. (1999 [triangle]). For related crystal structures, see: Li & Liang (2006 [triangle]); Raza et al. (2009 [triangle]); Wheeler et al. (2004 [triangle]). For the graph-set analysis of hydrogen-bond patterns in crystal structures, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2678-scheme1.jpg

Experimental

Crystal data

  • C11H9NO4
  • M r = 219.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2678-efi1.jpg
  • a = 9.3056 (8) Å
  • b = 5.9768 (4) Å
  • c = 9.7583 (8) Å
  • β = 110.988 (3)°
  • V = 506.73 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.30 × 0.25 × 0.23 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.968, T max = 0.974
  • 5705 measured reflections
  • 1381 independent reflections
  • 1302 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.082
  • S = 1.06
  • 1381 reflections
  • 153 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040434/si2209sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040434/si2209Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

supplementary crystallographic information

Comment

Isocoumarin are important components among natural products that exhibit a broad range of biological activities including anti-microbial, anti-allergic and immunomodulatory (Matsuda et al., 1999). Isocoumarins are also useful intermediates in synthesis of many important compounds e.g., isoquinoline alkaloids. The titled compound (I, Fig. 1), is an intermediate towards the synthesis of isocoumarins. The title compound has also been prepared for complexation with various metals.

We have recently reported the crystal structure of (II) (2R)-2-(1,3-Dioxoisoindolin-2-yl)-4-(methylsulfanyl)butanoic acid (Raza et al., 2009) which contain the same isoindoline. The crystal structures of (III) DL-2-(1,3-Dioxoisoindolin-2-yl)propanoic acid (Wheeler et al., 2004), (IV) (S)-2-(1,3-Dioxoisoindolin-2-yl)propanoic acid (Li & Liang, 2006) have also been reported which are the racemate of (I).

In (I) the phthalimide ring system A (C1—C8/N1/O1/O2) and the group B (C9/C10/O3/O4) are planar with r.m.s. deviations of 0.0253 and 0.0067 Å respectively, from their mean square planes. The dihedral angle between A/B is 66.41 (7)°, whereas it is 86.7 (3)° as observed in (IV). The title compound is stabilized in the form of infinite one dimensional polymeric chains due to intermolecular H-bondings (Table 1, Fig. 2). There exist a weak intramolecular H-bondings forming S(5) ring motifs (Fig. 1) (Bernstein et al., 1995). The C==O···Cg1 [Cg1 is the centroid of five membered ring (C1/C2/C7/C8/N1)] interaction (Table 1), may also be responsible for stabilizing of the molecules.

Experimental

The (S)-alanine (1.96 g, 22 mmol) and phthallic anhydride (3.6 g, 24.3 mmol) were added to a flask with constant stirring. The temperature of oil bath was kept at 433 K. Three hours later the flask was removed from oil bath, brought to room temperature and the crystals of phthallic anhydride on the walls of the flask were removed manually. The solid crude product was purified by crystallization from ethanol:water (8:2) that yielded (70%) colorless prisms of the title compound (I).

Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged using MERG 3.

The coordinates of H3A and H9 were refined. The H-atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and 1.2 for all other H atoms.

Figures

Fig. 1.
View of (I) with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line represent the intramolecular H-bonding.
Fig. 2.
The partial packing (PLATON; Spek, 2009) which shows that molecules form infinite one dimensional polymeric chains.

Crystal data

C11H9NO4F(000) = 228
Mr = 219.19Dx = 1.437 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2319 reflections
a = 9.3056 (8) Åθ = 2.2–28.3°
b = 5.9768 (4) ŵ = 0.11 mm1
c = 9.7583 (8) ÅT = 296 K
β = 110.988 (3)°Prism, colorless
V = 506.73 (7) Å30.30 × 0.25 × 0.23 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer1381 independent reflections
Radiation source: fine-focus sealed tube1302 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω scansh = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −7→7
Tmin = 0.968, Tmax = 0.974l = −12→13
5705 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082w = 1/[σ2(Fo2) + (0.0443P)2 + 0.0584P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1381 reflectionsΔρmax = 0.16 e Å3
153 parametersΔρmin = −0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.132 (13)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.34281 (15)1.0490 (3)0.31137 (15)0.0551 (4)
O2−0.00322 (14)0.5031 (3)0.09136 (15)0.0520 (4)
O30.41497 (15)0.5761 (3)0.42520 (15)0.0550 (5)
O40.57532 (16)0.5164 (5)0.30695 (19)0.0817 (7)
N10.19830 (14)0.7462 (3)0.19714 (14)0.0358 (4)
C10.22202 (19)0.9473 (3)0.27082 (17)0.0382 (4)
C20.07493 (19)1.0033 (3)0.28948 (17)0.0402 (5)
C30.0385 (3)1.1806 (4)0.3606 (2)0.0562 (6)
C4−0.1092 (3)1.1832 (5)0.3656 (2)0.0690 (8)
C5−0.2125 (3)1.0146 (6)0.3031 (2)0.0684 (9)
C6−0.1755 (2)0.8353 (5)0.2313 (2)0.0539 (6)
C7−0.02955 (19)0.8354 (3)0.22485 (16)0.0392 (4)
C80.04667 (17)0.6700 (3)0.16030 (16)0.0361 (4)
C90.31769 (19)0.6226 (4)0.1658 (2)0.0432 (5)
C100.45173 (19)0.5679 (4)0.3068 (2)0.0470 (5)
C110.3710 (3)0.7438 (6)0.0556 (2)0.0642 (8)
H30.109031.293590.403320.0674*
H3A0.490 (4)0.564 (6)0.497 (4)0.0660*
H4−0.138591.301020.411990.0828*
H5−0.309901.020720.309050.0820*
H6−0.245370.721110.189640.0647*
H90.273 (2)0.482 (5)0.125 (2)0.0518*
H11A0.284110.77266−0.032250.0962*
H11B0.444070.652390.032440.0962*
H11C0.418500.882890.096920.0962*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0464 (7)0.0507 (8)0.0545 (7)−0.0167 (7)0.0015 (5)−0.0070 (7)
O20.0474 (7)0.0484 (8)0.0563 (7)−0.0153 (6)0.0139 (6)−0.0153 (7)
O30.0409 (6)0.0693 (10)0.0459 (7)0.0152 (7)0.0046 (5)0.0073 (7)
O40.0412 (7)0.1193 (17)0.0869 (11)0.0252 (10)0.0257 (8)0.0306 (13)
N10.0288 (6)0.0363 (7)0.0363 (6)0.0000 (5)0.0042 (5)−0.0024 (6)
C10.0385 (8)0.0368 (8)0.0310 (7)−0.0025 (7)0.0024 (6)−0.0004 (6)
C20.0470 (9)0.0382 (9)0.0311 (7)0.0044 (7)0.0088 (6)0.0021 (7)
C30.0773 (13)0.0452 (11)0.0407 (8)0.0125 (10)0.0147 (9)−0.0034 (8)
C40.0893 (16)0.0758 (17)0.0461 (10)0.0356 (15)0.0293 (10)0.0019 (11)
C50.0612 (12)0.098 (2)0.0532 (11)0.0276 (14)0.0292 (10)0.0102 (13)
C60.0444 (9)0.0727 (14)0.0478 (9)0.0048 (10)0.0203 (8)0.0056 (10)
C70.0382 (7)0.0451 (9)0.0314 (7)0.0023 (7)0.0089 (6)0.0036 (7)
C80.0327 (7)0.0384 (8)0.0325 (7)−0.0032 (7)0.0060 (5)0.0005 (6)
C90.0346 (8)0.0473 (10)0.0444 (8)0.0009 (8)0.0102 (6)−0.0067 (8)
C100.0338 (7)0.0475 (10)0.0566 (10)0.0031 (8)0.0126 (7)0.0069 (9)
C110.0556 (11)0.0928 (18)0.0468 (10)0.0056 (13)0.0217 (8)0.0027 (12)

Geometric parameters (Å, °)

O1—C11.213 (2)C5—C61.390 (4)
O2—C81.200 (2)C6—C71.382 (3)
O3—C101.318 (2)C7—C81.482 (2)
O4—C101.190 (3)C9—C101.525 (3)
O3—H3A0.80 (4)C9—C111.520 (3)
N1—C81.402 (2)C3—H30.9300
N1—C91.455 (3)C4—H40.9300
N1—C11.377 (2)C5—H50.9300
C1—C21.482 (3)C6—H60.9300
C2—C31.374 (3)C9—H90.96 (3)
C2—C71.382 (2)C11—H11A0.9600
C3—C41.393 (4)C11—H11B0.9600
C4—C51.375 (4)C11—H11C0.9600
O1···O33.023 (2)C5···C11viii3.551 (3)
O1···C103.055 (3)C6···O4ix3.283 (3)
O1···C10i3.268 (3)C7···O2viii3.361 (2)
O1···C113.177 (3)C8···O2viii3.074 (2)
O1···O3ii2.750 (2)C8···C3iv3.534 (3)
O2···C7iii3.361 (2)C10···O13.055 (3)
O2···N1iii3.149 (2)C10···O1iv3.268 (3)
O2···C3iv3.168 (3)C11···C5iii3.551 (3)
O2···C8iii3.074 (2)C11···O13.177 (3)
O2···C1iii3.405 (2)C1···H3Aii2.91 (4)
O3···N12.615 (2)C1···H11C2.9300
O3···O13.023 (2)C2···H4x3.0100
O3···C12.912 (2)C3···H4x3.0800
O3···O1v2.750 (2)C5···H3x2.9800
O4···C6vi3.283 (3)C5···H11Aviii2.9200
O1···H3Aii1.96 (4)H3···C5xi2.9800
O1···H11C2.6300H3A···O1v1.96 (4)
O2···H11Aiii2.8300H3A···C1v2.91 (4)
O2···H92.48 (2)H4···O4xii2.8000
O4···H4vii2.8000H4···C2xi3.0100
O4···H6vi2.6400H4···C3xi3.0800
O4···H11B2.6400H6···O4ix2.6400
N1···O32.615 (2)H9···O22.48 (2)
N1···O2viii3.149 (2)H11A···O2viii2.8300
C1···O32.912 (2)H11A···C5iii2.9200
C1···O2viii3.405 (2)H11B···O42.6400
C3···C8i3.534 (3)H11C···O12.6300
C3···O2i3.168 (3)H11C···C12.9300
C10—O3—H3A110 (3)N1—C9—C10111.01 (15)
C1—N1—C9124.14 (15)O3—C10—C9113.43 (16)
C8—N1—C9123.75 (16)O4—C10—C9122.29 (18)
C1—N1—C8112.08 (15)O3—C10—O4124.24 (19)
O1—C1—C2129.45 (17)C2—C3—H3122.00
N1—C1—C2106.19 (15)C4—C3—H3122.00
O1—C1—N1124.35 (17)C3—C4—H4119.00
C1—C2—C3129.93 (19)C5—C4—H4119.00
C3—C2—C7122.00 (19)C4—C5—H5119.00
C1—C2—C7108.03 (15)C6—C5—H5119.00
C2—C3—C4116.8 (2)C5—C6—H6122.00
C3—C4—C5121.2 (3)C7—C6—H6122.00
C4—C5—C6121.9 (3)N1—C9—H9106.4 (13)
C5—C6—C7116.6 (2)C10—C9—H9106.2 (13)
C2—C7—C6121.44 (18)C11—C9—H9109.1 (12)
C2—C7—C8108.22 (16)C9—C11—H11A109.00
C6—C7—C8130.30 (18)C9—C11—H11B109.00
O2—C8—N1124.46 (16)C9—C11—H11C109.00
O2—C8—C7130.15 (16)H11A—C11—H11B109.00
N1—C8—C7105.39 (14)H11A—C11—H11C109.00
N1—C9—C11112.0 (2)H11B—C11—H11C109.00
C10—C9—C11111.83 (17)
C8—N1—C1—O1−178.37 (16)C1—C2—C7—C6176.60 (16)
C8—N1—C1—C22.54 (18)C1—C2—C7—C8−1.21 (18)
C9—N1—C1—O13.8 (3)C3—C2—C7—C6−1.4 (3)
C9—N1—C1—C2−175.31 (15)C3—C2—C7—C8−179.17 (16)
C1—N1—C8—O2177.22 (16)C2—C3—C4—C50.5 (3)
C1—N1—C8—C7−3.24 (18)C3—C4—C5—C6−0.5 (4)
C9—N1—C8—O2−4.9 (3)C4—C5—C6—C7−0.4 (3)
C9—N1—C8—C7174.62 (15)C5—C6—C7—C21.3 (3)
C1—N1—C9—C1057.8 (2)C5—C6—C7—C8178.61 (18)
C1—N1—C9—C11−67.9 (2)C2—C7—C8—O2−177.83 (18)
C8—N1—C9—C10−119.78 (18)C2—C7—C8—N12.66 (17)
C8—N1—C9—C11114.5 (2)C6—C7—C8—O24.6 (3)
O1—C1—C2—C3−2.0 (3)C6—C7—C8—N1−174.88 (18)
O1—C1—C2—C7−179.76 (18)N1—C9—C10—O320.4 (3)
N1—C1—C2—C3177.02 (18)N1—C9—C10—O4−161.9 (3)
N1—C1—C2—C7−0.73 (18)C11—C9—C10—O3146.2 (2)
C1—C2—C3—C4−177.09 (18)C11—C9—C10—O4−36.0 (4)
C7—C2—C3—C40.4 (3)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1; (iii) −x, y−1/2, −z; (iv) x, y−1, z; (v) −x+1, y−1/2, −z+1; (vi) x+1, y, z; (vii) x+1, y−1, z; (viii) −x, y+1/2, −z; (ix) x−1, y, z; (x) −x, y−1/2, −z+1; (xi) −x, y+1/2, −z+1; (xii) x−1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O1v0.80 (4)1.96 (4)2.750 (2)172 (4)
C9—H9···O20.96 (3)2.48 (2)2.899 (2)106.6 (17)
C8—O2···Cg1iii1.200 (2)3.0874 (16)4.0543 (17)138.28 (12)

Symmetry codes: (v) −x+1, y−1/2, −z+1; (iii) −x, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2209).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Li, J. & Liang, Z.-P. (2006). Acta Cryst. E62, o4915–o4916.
  • Matsuda, H., Shimoda, H. & Yoshikawa, M. (1999). Bioorg. Med. Chem.7, 1445–1450. [PubMed]
  • Raza, A. R., Tahir, M. N., Saddiqa, A., Danish, M. & Iqbal, M. S. (2009). Acta Cryst. E65, o2002. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wheeler, K. A., Gordineer, M. & Deschamps, J. R. (2004). Acta Cryst. E60, o1399–o1400.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography