PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2960.
Published online 2009 October 31. doi:  10.1107/S1600536809044158
PMCID: PMC2970963

(E)-2-[2-(2-Nitro­phen­yl)ethen­yl]-8-quinolyl acetate

Abstract

The title compound, C19H14N2O4, crystallizes with two molecules with very similar conformations in the asymmetric unit; the angles between the two ring systems are 8.7 (1) and 4.2 (1)°. In the crystal, inter­molecular π–π inter­actions [centroid–centroid distance 3.973 (1) Å] lead to a three-dimensional network.

Related literature

For the biological properties of 8-hydroxy­quinoline derivatives, see: Chen et al. (2002 [triangle]); Fakhfakh et al. (2003 [triangle]); Mekouar et al. (1998 [triangle]); Ouali et al. (2000 [triangle]); Storz et al. (2004 [triangle]); Zeng, Wang et al. (2006 [triangle]). For a related crystal structure, see: Zeng, OuYang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2960-scheme1.jpg

Experimental

Crystal data

  • C19H14N2O4
  • M r = 334.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2960-efi1.jpg
  • a = 25.8466 (13) Å
  • b = 11.8451 (6) Å
  • c = 10.5870 (5) Å
  • V = 3241.3 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.47 × 0.45 × 0.26 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.956, T max = 0.975
  • 17451 measured reflections
  • 3731 independent reflections
  • 2785 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.171
  • S = 1.04
  • 3731 reflections
  • 453 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044158/wn2356sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044158/wn2356Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20802010), the Natural Science Foundation of Guangdong Province (No. 07300884) and the 211 project of Guangdong University of Technology.

supplementary crystallographic information

Comment

8-Hydroxyquinoline derivatives are important constituents in a variety of classes of pharmaceutically important compounds. They have generated interest as a new class of potent HIV-1 integrase inhibitors (Mekouar et al., 1998), for modeling of the inhibition of retroviral integrases (Ouali et al., 2000), as protein tyrosine kinase inhibitors (Chen et al., 2002), as protozoal and retroviral co-infections (Fakhfakh et al., 2003), and as anti-HIV-1 agents (Storz et al., 2004). Zeng, Wang et al. (2006) reported that a series of 8-hydroxyquinoline derivatives with vinyl substituents at the 2-position could induce the proliferation of rMSCs (rat mesenchymal stem cells). With these findings, some analogs need to be synthesized for structure activity relationship research to find more potent molecules.

One of these analogs, the title compound, (E)-2-[2-(2-nitrophenyl)ethenyl]-8-acetoxyquinoline, was prepared by the Knoevenagel condensation reaction between 8-hydroxyquinaldine and 2-nitrobenzaldehyde (Zeng, OuYang et al. (2006)) (Fig. 1). To provide structural information for the title compound, we studied its crystal structure.

The molecular structure of the two molecules per asymmetric unit is illustrated in Fig. 2. In one molecule, the angle between the two ring systems is 8.7 (1)°; in the other it is 4.2 (1)°. In this crystal structure, the ethylenic bond lengths for C1—C2 and C26—C27 are 1.322 (5) and 1.329 (5) Å, respectively. The analogous bond reported by Zeng, OuYang et al. (2006) has a length of 1.335 (2) Å. Intermolecular π–π interactions, with a centroid···centroid distance of 3.973 (1) Å, lead directly to a three-dimensional supramolecular network (Fig. 3).

Experimental

To a solution of 8-hydroxyquinaldine (1.19 g, 7.5 mmol) in acetic anhydride (5 ml) was added 2-nitrobenzaldehyde (1.12 g, 7.5 mmol). The mixture was heated under reflux for 11 h. After cooling, it was poured into ice water (50 ml) and stirred overnight. The yellow solid obtained was filtered and washed with water. The solid residue was recrystallized from CH2Cl2 to afford the title compound (2.04 g, 75%). mp 143–144 °C. 20 mg was dissolved in 10 ml (EtOAc:petroleum ether 1:4) and the solution was kept at room temperature for 4 d. Natural evaporation gave orange single crystals suitable for X-ray analysis.

Refinement

All H atoms were positioned geometrically and refined using a riding model (including free rotation about the acetoxy C—C bond), with C—H = 0.95 Å (Csp2) and 0.98 Å (methyl C); Uiso(H) = kUeq(C), where k = 1.5 for methyl H atoms and 1.2 for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The synthesis of (E)-2-[2-(2-nitrophenyl)ethenyl]-8-acetoxyquinoline.
Fig. 2.
View of the asymmetric unit of the title compound. Hydrogen atoms have been omitted.
Fig. 3.
View of the three-dimensional supramolecular structure.

Crystal data

C19H14N2O4F(000) = 1392
Mr = 334.32Dx = 1.370 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5386 reflections
a = 25.8466 (13) Åθ = 2.3–26.3°
b = 11.8451 (6) ŵ = 0.10 mm1
c = 10.5870 (5) ÅT = 173 K
V = 3241.3 (3) Å3Block, yellow
Z = 80.47 × 0.45 × 0.26 mm

Data collection

Bruker SMART 1000 CCD diffractometer3731 independent reflections
Radiation source: fine-focus sealed tube2785 reflections with I > 2σ(I)
graphiteRint = 0.039
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −29→33
Tmin = 0.956, Tmax = 0.975k = −13→15
17451 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.1126P)2 + 0.5654P] where P = (Fo2 + 2Fc2)/3
3731 reflections(Δ/σ)max = 0.004
453 parametersΔρmax = 0.56 e Å3
7 restraintsΔρmin = −0.22 e Å3

Special details

Experimental. 1H NMR (CDCl3, 300 MHz) δ 8.17–8.26 (m, 2H), 7.94 (d, J=7.5 Hz, 1H), 7.82 (d, J=7.8 Hz 1H), 7.64–7.70 (m, 4H), 7.47–7.53 (m, 3H), 2.58(s, 3H); IR (KBr, cm-1): 3067, 1723, 1577, 1520, 1457, 1175, 1128, 970, 850, 765, 708; ESI-MS m/z: 335.9 ([M+H]+); Elemental analysis: found C: 68.45, H: 4.40, N: 8.38 (%)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.79027 (14)0.4406 (3)0.2939 (4)0.0354 (9)
H10.77530.51180.27480.043*
C20.83678 (14)0.4416 (3)0.3458 (4)0.0347 (8)
H20.85220.37120.36640.042*
C30.92068 (14)0.7392 (3)0.4307 (4)0.0337 (9)
C40.87102 (14)0.7393 (3)0.3743 (4)0.0301 (8)
N50.84409 (11)0.6440 (3)0.3460 (3)0.0299 (7)
C60.86607 (13)0.5452 (3)0.3734 (4)0.0321 (8)
C70.91645 (16)0.5376 (4)0.4257 (4)0.0383 (9)
H70.93150.46560.44030.046*
C80.94344 (14)0.6324 (4)0.4549 (4)0.0396 (10)
H80.97700.62730.49100.048*
C90.94489 (16)0.8434 (4)0.4613 (4)0.0432 (10)
H90.97790.84360.50070.052*
C100.92101 (17)0.9425 (4)0.4346 (4)0.0447 (10)
H100.93721.01160.45690.054*
C110.87218 (16)0.9444 (3)0.3739 (4)0.0393 (9)
H110.85601.01430.35440.047*
C120.84871 (14)0.8454 (3)0.3436 (4)0.0310 (8)
O130.79975 (10)0.8466 (2)0.2896 (3)0.0343 (6)
C140.75968 (15)0.3408 (3)0.2631 (4)0.0360 (9)
C150.71059 (16)0.3464 (4)0.2113 (5)0.0470 (11)
C160.67993 (18)0.2511 (5)0.1900 (6)0.0594 (15)
H160.64580.25890.15760.071*
C170.6995 (2)0.1471 (5)0.2162 (5)0.0580 (14)
H170.67940.08150.20050.070*
C180.74860 (19)0.1373 (4)0.2656 (5)0.0492 (11)
H180.76230.06460.28340.059*
C190.77801 (16)0.2319 (3)0.2896 (4)0.0395 (10)
H190.81160.22310.32490.047*
C200.79586 (15)0.8136 (3)0.1658 (4)0.0330 (8)
O210.83315 (11)0.7982 (2)0.1009 (3)0.0417 (7)
C220.74072 (15)0.8026 (4)0.1270 (5)0.0473 (11)
H22A0.73850.80110.03460.071*
H22B0.72100.86700.15940.071*
H22C0.72640.73240.16140.071*
N230.68857 (17)0.4577 (5)0.1744 (6)0.0746 (17)
O240.7137 (2)0.5202 (4)0.1073 (7)0.101 (2)
O250.64504 (18)0.4750 (5)0.2109 (7)0.124 (2)
C260.46521 (13)−0.0779 (3)0.1266 (4)0.0304 (8)
H260.4808−0.00790.14830.036*
C270.41923 (15)−0.0756 (3)0.0705 (4)0.0358 (9)
H270.4045−0.14580.04590.043*
C280.33041 (14)0.2153 (3)−0.0099 (4)0.0321 (8)
C290.37963 (13)0.2194 (3)0.0491 (4)0.0290 (8)
N300.40900 (11)0.1266 (3)0.0752 (3)0.0308 (7)
C310.38950 (14)0.0269 (3)0.0438 (4)0.0318 (8)
C320.33986 (15)0.0140 (3)−0.0117 (4)0.0378 (9)
H320.3268−0.0592−0.02980.045*
C330.31110 (15)0.1068 (4)−0.0387 (4)0.0376 (9)
H330.27800.0988−0.07680.045*
C340.30335 (15)0.3162 (3)−0.0367 (4)0.0364 (9)
H340.27050.3132−0.07670.044*
C350.32446 (16)0.4174 (4)−0.0053 (4)0.0415 (10)
H350.30630.4849−0.02470.050*
C360.37324 (15)0.4241 (3)0.0561 (4)0.0383 (9)
H360.38760.49550.07720.046*
C370.39908 (14)0.3276 (3)0.0842 (4)0.0314 (8)
O380.44801 (10)0.3328 (2)0.1386 (3)0.0339 (6)
C390.49328 (13)−0.1817 (3)0.1570 (4)0.0305 (8)
C400.54472 (14)−0.1848 (3)0.2014 (4)0.0340 (9)
C410.57112 (16)−0.2840 (4)0.2254 (5)0.0425 (11)
H410.6063−0.28220.25130.051*
C420.54573 (16)−0.3852 (4)0.2111 (5)0.0458 (10)
H420.5628−0.45400.23110.055*
C430.49544 (15)−0.3867 (3)0.1678 (5)0.0428 (10)
H430.4782−0.45680.15640.051*
C440.46994 (14)−0.2877 (3)0.1411 (4)0.0360 (9)
H440.4354−0.29120.11090.043*
C450.45270 (15)0.2938 (3)0.2601 (4)0.0345 (9)
O460.41633 (11)0.2756 (3)0.3261 (3)0.0436 (7)
C470.50824 (17)0.2795 (4)0.2951 (5)0.0510 (12)
H47A0.51120.27150.38700.076*
H47B0.52790.34580.26740.076*
H47C0.52210.21180.25400.076*
N480.57481 (13)−0.0810 (3)0.2185 (4)0.0428 (9)
O490.55389 (14)0.0009 (3)0.2665 (4)0.0621 (10)
O500.62029 (12)−0.0830 (3)0.1858 (4)0.0628 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.037 (2)0.033 (2)0.036 (2)0.0056 (15)−0.0016 (16)−0.0013 (16)
C20.0349 (19)0.0296 (19)0.039 (2)0.0053 (15)0.0015 (16)0.0038 (16)
C30.0286 (19)0.049 (2)0.023 (2)−0.0057 (16)−0.0027 (16)0.0050 (16)
C40.0296 (19)0.038 (2)0.0223 (19)−0.0017 (15)0.0006 (15)0.0022 (15)
N50.0253 (15)0.0350 (17)0.0293 (17)0.0025 (12)−0.0008 (13)0.0008 (13)
C60.0279 (18)0.036 (2)0.032 (2)0.0030 (15)0.0030 (15)0.0058 (16)
C70.039 (2)0.045 (2)0.031 (2)0.0094 (17)−0.0005 (17)0.0089 (18)
C80.0250 (19)0.059 (3)0.035 (2)0.0009 (17)−0.0046 (16)0.0100 (19)
C90.031 (2)0.061 (3)0.038 (2)−0.0135 (19)−0.0060 (18)0.002 (2)
C100.048 (2)0.049 (3)0.037 (2)−0.021 (2)−0.0052 (19)−0.0014 (19)
C110.040 (2)0.037 (2)0.040 (2)−0.0045 (17)−0.0010 (18)−0.0002 (18)
C120.0263 (18)0.038 (2)0.029 (2)−0.0030 (14)0.0012 (15)−0.0016 (15)
O130.0299 (13)0.0375 (15)0.0356 (15)0.0027 (10)−0.0024 (11)−0.0036 (11)
C140.032 (2)0.039 (2)0.036 (2)0.0017 (16)0.0026 (16)−0.0066 (17)
C150.039 (2)0.060 (3)0.042 (3)0.0037 (19)−0.004 (2)−0.016 (2)
C160.036 (2)0.089 (4)0.054 (3)−0.007 (2)−0.006 (2)−0.023 (3)
C170.062 (3)0.067 (4)0.046 (3)−0.027 (3)0.012 (2)−0.008 (2)
C180.058 (3)0.042 (2)0.047 (3)−0.011 (2)0.010 (2)0.001 (2)
C190.040 (2)0.038 (2)0.041 (3)−0.0021 (17)0.0066 (19)0.0015 (18)
C200.0354 (19)0.0249 (18)0.039 (2)0.0032 (14)−0.0032 (17)0.0015 (16)
O210.0397 (16)0.0473 (16)0.0382 (17)0.0054 (12)0.0026 (13)0.0020 (13)
C220.036 (2)0.061 (3)0.044 (3)0.0046 (19)−0.0094 (19)0.000 (2)
N230.045 (3)0.089 (4)0.090 (4)0.028 (2)−0.035 (3)−0.039 (3)
O240.102 (4)0.053 (2)0.150 (5)0.014 (2)−0.063 (4)−0.004 (3)
O250.077 (3)0.167 (5)0.126 (4)0.071 (3)−0.028 (3)−0.049 (4)
C260.0292 (18)0.0292 (18)0.0326 (19)−0.0033 (14)0.0012 (15)0.0004 (15)
C270.038 (2)0.0288 (19)0.041 (2)0.0020 (15)−0.0058 (17)−0.0073 (16)
C280.0293 (19)0.043 (2)0.024 (2)0.0012 (16)−0.0011 (15)−0.0016 (16)
C290.0227 (17)0.036 (2)0.028 (2)0.0018 (14)0.0017 (15)0.0010 (15)
N300.0277 (15)0.0323 (16)0.0324 (18)0.0018 (12)−0.0006 (13)−0.0036 (13)
C310.0308 (18)0.035 (2)0.029 (2)−0.0003 (15)−0.0018 (15)−0.0031 (15)
C320.036 (2)0.035 (2)0.043 (2)−0.0014 (16)−0.0104 (17)−0.0033 (17)
C330.0266 (18)0.047 (2)0.039 (2)−0.0024 (16)−0.0088 (16)−0.0033 (19)
C340.031 (2)0.043 (2)0.035 (2)0.0056 (16)−0.0038 (17)0.0001 (18)
C350.039 (2)0.043 (2)0.042 (3)0.0125 (18)0.0008 (18)0.0050 (19)
C360.039 (2)0.033 (2)0.043 (2)0.0005 (16)0.0005 (18)−0.0004 (18)
C370.0279 (18)0.038 (2)0.029 (2)−0.0001 (14)0.0028 (15)−0.0016 (16)
O380.0295 (13)0.0325 (13)0.0398 (16)−0.0051 (10)−0.0011 (11)0.0029 (12)
C390.0291 (18)0.0318 (18)0.031 (2)−0.0006 (14)0.0026 (15)−0.0011 (16)
C400.0313 (19)0.036 (2)0.035 (2)−0.0040 (15)−0.0038 (17)−0.0019 (17)
C410.032 (2)0.045 (3)0.051 (3)0.0033 (17)−0.006 (2)0.000 (2)
C420.043 (2)0.037 (2)0.058 (3)0.0068 (17)0.000 (2)0.000 (2)
C430.035 (2)0.032 (2)0.060 (3)−0.0005 (16)0.0018 (19)−0.0030 (19)
C440.0267 (18)0.039 (2)0.042 (2)−0.0043 (15)0.0031 (16)−0.0013 (18)
C450.038 (2)0.0258 (18)0.040 (2)−0.0047 (15)−0.0043 (17)−0.0021 (16)
O460.0421 (17)0.0522 (18)0.0366 (17)−0.0094 (13)0.0040 (14)−0.0005 (14)
C470.043 (3)0.066 (3)0.043 (3)−0.004 (2)−0.010 (2)0.008 (2)
N480.045 (2)0.0363 (19)0.047 (2)−0.0037 (15)−0.0175 (17)0.0026 (16)
O490.065 (2)0.0429 (19)0.079 (3)−0.0009 (16)−0.0301 (19)−0.0133 (18)
O500.0353 (16)0.062 (2)0.091 (3)−0.0134 (15)−0.0157 (17)0.009 (2)

Geometric parameters (Å, °)

C1—C21.322 (5)C26—C271.329 (5)
C1—C141.459 (5)C26—C391.464 (5)
C1—H10.9500C26—H260.9500
C2—C61.471 (5)C27—C311.465 (5)
C2—H20.9500C27—H270.9500
C3—C41.415 (5)C28—C331.412 (6)
C3—C81.418 (6)C28—C341.414 (5)
C3—C91.421 (6)C28—C291.418 (5)
C4—N51.361 (5)C29—N301.364 (5)
C4—C121.420 (5)C29—C371.426 (5)
N5—C61.332 (5)N30—C311.327 (5)
C6—C71.418 (5)C31—C321.419 (5)
C7—C81.358 (6)C32—C331.358 (6)
C7—H70.9500C32—H320.9500
C8—H80.9500C33—H330.9500
C9—C101.357 (6)C34—C351.358 (6)
C9—H90.9500C34—H340.9500
C10—C111.417 (6)C35—C361.420 (6)
C10—H100.9500C35—H350.9500
C11—C121.358 (5)C36—C371.357 (5)
C11—H110.9500C36—H360.9500
C12—O131.389 (4)C37—O381.391 (5)
O13—C201.372 (5)O38—C451.372 (5)
C14—C151.384 (6)C39—C441.403 (5)
C14—C191.403 (6)C39—C401.411 (5)
C15—C161.397 (7)C40—C411.382 (6)
C15—N231.488 (7)C40—N481.466 (5)
C16—C171.361 (8)C41—C421.375 (6)
C16—H160.9500C41—H410.9500
C17—C181.377 (7)C42—C431.378 (6)
C17—H170.9500C42—H420.9500
C18—C191.378 (6)C43—C441.375 (6)
C18—H180.9500C43—H430.9500
C19—H190.9500C44—H440.9500
C20—O211.197 (5)C45—O461.191 (5)
C20—C221.489 (5)C45—C471.492 (6)
C22—H22A0.9800C47—H47A0.9800
C22—H22B0.9800C47—H47B0.9800
C22—H22C0.9800C47—H47C0.9800
N23—O251.207 (6)N48—O491.222 (5)
N23—O241.215 (7)N48—O501.226 (5)
C2—C1—C14126.4 (4)C27—C26—C39123.9 (3)
C2—C1—H1116.8C27—C26—H26118.0
C14—C1—H1116.8C39—C26—H26118.0
C1—C2—C6123.9 (3)C26—C27—C31124.9 (3)
C1—C2—H2118.0C26—C27—H27117.6
C6—C2—H2118.0C31—C27—H27117.6
C4—C3—C8117.0 (4)C33—C28—C34123.4 (3)
C4—C3—C9119.7 (4)C33—C28—C29116.3 (3)
C8—C3—C9123.4 (4)C34—C28—C29120.2 (3)
N5—C4—C3123.8 (3)N30—C29—C28124.1 (3)
N5—C4—C12118.4 (3)N30—C29—C37118.4 (3)
C3—C4—C12117.8 (3)C28—C29—C37117.5 (3)
C6—N5—C4117.6 (3)C31—N30—C29117.1 (3)
N5—C6—C7122.2 (4)N30—C31—C32122.9 (3)
N5—C6—C2118.0 (3)N30—C31—C27119.4 (3)
C7—C6—C2119.8 (3)C32—C31—C27117.7 (3)
C8—C7—C6120.6 (4)C33—C32—C31119.7 (4)
C8—C7—H7119.7C33—C32—H32120.2
C6—C7—H7119.7C31—C32—H32120.2
C7—C8—C3118.9 (4)C32—C33—C28119.9 (3)
C7—C8—H8120.6C32—C33—H33120.1
C3—C8—H8120.6C28—C33—H33120.1
C10—C9—C3120.2 (4)C35—C34—C28119.9 (4)
C10—C9—H9119.9C35—C34—H34120.1
C3—C9—H9119.9C28—C34—H34120.1
C9—C10—C11120.9 (4)C34—C35—C36121.2 (4)
C9—C10—H10119.5C34—C35—H35119.4
C11—C10—H10119.5C36—C35—H35119.4
C12—C11—C10119.4 (4)C37—C36—C35119.3 (4)
C12—C11—H11120.3C37—C36—H36120.3
C10—C11—H11120.3C35—C36—H36120.3
C11—C12—O13119.7 (3)C36—C37—O38120.1 (3)
C11—C12—C4121.9 (4)C36—C37—C29121.8 (3)
O13—C12—C4118.3 (3)O38—C37—C29117.9 (3)
C20—O13—C12117.2 (3)C45—O38—C37117.0 (3)
C15—C14—C19115.6 (4)C44—C39—C40114.9 (3)
C15—C14—C1123.2 (4)C44—C39—C26120.8 (3)
C19—C14—C1121.2 (4)C40—C39—C26124.2 (3)
C14—C15—C16123.1 (5)C41—C40—C39123.3 (4)
C14—C15—N23119.8 (4)C41—C40—N48115.3 (3)
C16—C15—N23117.2 (4)C39—C40—N48121.3 (3)
C17—C16—C15119.2 (4)C42—C41—C40119.0 (4)
C17—C16—H16120.4C42—C41—H41120.5
C15—C16—H16120.4C40—C41—H41120.5
C16—C17—C18119.8 (4)C41—C42—C43119.8 (4)
C16—C17—H17120.1C41—C42—H42120.1
C18—C17—H17120.1C43—C42—H42120.1
C17—C18—C19120.6 (5)C44—C43—C42120.7 (4)
C17—C18—H18119.7C44—C43—H43119.7
C19—C18—H18119.7C42—C43—H43119.7
C18—C19—C14121.7 (4)C43—C44—C39122.2 (4)
C18—C19—H19119.2C43—C44—H44118.9
C14—C19—H19119.2C39—C44—H44118.9
O21—C20—O13122.2 (4)O46—C45—O38122.7 (4)
O21—C20—C22126.8 (4)O46—C45—C47126.4 (4)
O13—C20—C22111.0 (3)O38—C45—C47110.9 (4)
C20—C22—H22A109.5C45—C47—H47A109.5
C20—C22—H22B109.5C45—C47—H47B109.5
H22A—C22—H22B109.5H47A—C47—H47B109.5
C20—C22—H22C109.5C45—C47—H47C109.5
H22A—C22—H22C109.5H47A—C47—H47C109.5
H22B—C22—H22C109.5H47B—C47—H47C109.5
O25—N23—O24125.6 (7)O49—N48—O50123.8 (4)
O25—N23—C15115.0 (7)O49—N48—C40118.9 (4)
O24—N23—C15119.3 (4)O50—N48—C40117.3 (4)
C14—C1—C2—C6179.3 (4)C39—C26—C27—C31177.4 (4)
C8—C3—C4—N51.8 (6)C33—C28—C29—N302.0 (6)
C9—C3—C4—N5−177.5 (4)C34—C28—C29—N30−178.1 (4)
C8—C3—C4—C12−176.9 (4)C33—C28—C29—C37−177.3 (4)
C9—C3—C4—C123.8 (6)C34—C28—C29—C372.6 (5)
C3—C4—N5—C60.1 (6)C28—C29—N30—C31−0.7 (6)
C12—C4—N5—C6178.8 (3)C37—C29—N30—C31178.7 (4)
C4—N5—C6—C7−2.5 (6)C29—N30—C31—C32−1.6 (6)
C4—N5—C6—C2178.7 (3)C29—N30—C31—C27−179.5 (3)
C1—C2—C6—N50.9 (6)C26—C27—C31—N300.9 (7)
C1—C2—C6—C7−178.0 (4)C26—C27—C31—C32−177.2 (4)
N5—C6—C7—C82.9 (6)N30—C31—C32—C332.3 (6)
C2—C6—C7—C8−178.2 (4)C27—C31—C32—C33−179.7 (4)
C6—C7—C8—C3−0.9 (6)C31—C32—C33—C28−0.8 (7)
C4—C3—C8—C7−1.3 (6)C34—C28—C33—C32178.9 (4)
C9—C3—C8—C7178.0 (4)C29—C28—C33—C32−1.2 (6)
C4—C3—C9—C10−1.2 (7)C33—C28—C34—C35179.6 (4)
C8—C3—C9—C10179.5 (4)C29—C28—C34—C35−0.4 (6)
C3—C9—C10—C11−1.2 (7)C28—C34—C35—C36−0.9 (6)
C9—C10—C11—C120.9 (7)C34—C35—C36—C37−0.3 (6)
C10—C11—C12—O13176.9 (4)C35—C36—C37—O38176.8 (4)
C10—C11—C12—C41.8 (6)C35—C36—C37—C292.7 (6)
N5—C4—C12—C11177.1 (4)N30—C29—C37—C36176.8 (4)
C3—C4—C12—C11−4.1 (6)C28—C29—C37—C36−3.8 (6)
N5—C4—C12—O132.0 (6)N30—C29—C37—O382.5 (5)
C3—C4—C12—O13−179.3 (3)C28—C29—C37—O38−178.1 (3)
C11—C12—O13—C20111.1 (4)C36—C37—O38—C45113.4 (4)
C4—C12—O13—C20−73.7 (4)C29—C37—O38—C45−72.2 (4)
C2—C1—C14—C15178.5 (4)C27—C26—C39—C44−7.5 (6)
C2—C1—C14—C191.1 (7)C27—C26—C39—C40171.5 (4)
C19—C14—C15—C162.1 (7)C44—C39—C40—C411.3 (6)
C1—C14—C15—C16−175.4 (4)C26—C39—C40—C41−177.7 (4)
C19—C14—C15—N23−177.3 (4)C44—C39—C40—N48177.9 (4)
C1—C14—C15—N235.2 (7)C26—C39—C40—N48−1.2 (6)
C14—C15—C16—C17−2.7 (8)C39—C40—C41—C42−3.1 (7)
N23—C15—C16—C17176.7 (5)N48—C40—C41—C42−179.8 (4)
C15—C16—C17—C181.4 (8)C40—C41—C42—C433.0 (8)
C16—C17—C18—C190.4 (8)C41—C42—C43—C44−1.3 (8)
C17—C18—C19—C14−1.0 (7)C42—C43—C44—C39−0.4 (7)
C15—C14—C19—C18−0.3 (7)C40—C39—C44—C430.4 (6)
C1—C14—C19—C18177.3 (4)C26—C39—C44—C43179.5 (4)
C12—O13—C20—O21−9.5 (5)C37—O38—C45—O46−13.8 (5)
C12—O13—C20—C22171.4 (3)C37—O38—C45—C47166.9 (3)
C14—C15—N23—O25−132.0 (5)C41—C40—N48—O49−140.5 (4)
C16—C15—N23—O2548.6 (7)C39—C40—N48—O4942.7 (6)
C14—C15—N23—O2451.4 (7)C41—C40—N48—O5037.9 (6)
C16—C15—N23—O24−128.0 (6)C39—C40—N48—O50−138.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2356).

References

  • Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, C.-S., Lai, S.-Y. & Hsu, P.-S. (2002). Chin. Pharm. J. (Taipei, Taiwan), 54, 353–374.
  • Fakhfakh, M. A., Fournet, A. & Prina, E. (2003). Bioorg. Med. Chem.11, 5013–5023. [PubMed]
  • Mekouar, K., Mouscadet, J. F. & Desmaele, D. (1998). J. Med. Chem.41, 2846–2857. [PubMed]
  • Ouali, M., Laboulais, C. & Leh, H. (2000). J. Med. Chem.43, 1949–1957. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Storz, T., Marti, R., Meier, R., Nury, P., Roeder, M. & Zhang, K. (2004). Org. Proc. Res. Dev.8, 663–665.
  • Zeng, H. P., OuYang, X. H., Wang, T. T., Yuan, G. Z., Zhang, G. H. & Zhang, X. M. (2006). Cryst. Growth Des.6, 1697–1702.
  • Zeng, H. P., Wang, T. T., OuYang, X. H. & Chen, D. F. (2006). Bioorg. Med. Chem.14, 5446–5450. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography