PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1337–m1338.
Published online 2009 October 10. doi:  10.1107/S1600536809040264
PMCID: PMC2970959

[N-(2-Hydroxy­ethyl)ethyl­enediamine]oxalatocopper(II)

Abstract

In the title mononuclear copper(II) compound, [Cu(C2O4)(C4H12N2O)], the CuII ion has a slightly distorted square-pyramidal geometry, with a tridentate N-(2-hydroxy­ethyl)ethyl­enediamine (HydEt-en) and a bidentate oxalate (ox) ligand. The N atoms of the HydEt-en ligand and the O atoms of ox ligand form the basal plane, while the O atom of the ethanol group of the HydEt-en ligand is located in the axial position. The complex mol­ecules participate in a supra­molecular assembly through N—H(...)O and O—H(...)O hydrogen bonds between HydEt-en and ox ligands.

Related literature

For general background to the HydEt-en ligand, see: Karadağ et al. (2004 [triangle], 2005 [triangle]); Paşaoğlu et al. (2005 [triangle]). For transition metal complexes of oxalate, see: Scott et al. (1973 [triangle]); Xia et al. (2004 [triangle]); Yılmaz et al. (2003 [triangle]); Youngme et al. (2003 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1337-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2O4)(C4H12N2O)]
  • M r = 255.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1337-efi1.jpg
  • a = 7.9766 (5) Å
  • b = 8.7263 (4) Å
  • c = 13.0191 (7) Å
  • V = 906.21 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.41 mm−1
  • T = 296 K
  • 0.52 × 0.42 × 0.23 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.570, T max = 0.781
  • 10045 measured reflections
  • 1868 independent reflections
  • 1780 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.065
  • S = 1.08
  • 1868 reflections
  • 143 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −1.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 797 Friedel pairs
  • Flack parameter: 0.017 (17)

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040264/ci2929sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040264/ci2929Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Orhan Büyükgüngör for his help with the data collection and acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

As part of our ongoing research on the preparation and characterization of mixed ligand metal complexes of HydEt-en we report here the synthesis and X-ray analysis of a mononuclear copper(II) complex, [Cu(HydEt-en)(ox)]. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed-ligand metal complexes.

In title compound, the HydEt-en ligand chelates through its two N atoms and the O atom of the hydroxyl group. The square-pyramidal coordination shell consists of three five-membered chelate rings (Fig. 1) viz. A (Cu1/O1/C1/C2/O4), B (Cu1/N1/C5/C6/N2) and C (Cu1/O5/C3/C4/N1). The mean plane through ring C is perpendicular to that through the ring A, with a dihedral angle of 89.27 (5)°. The bite angles of rings B and C are 86.36 (7)° and 78.65 (7)°, respectively.

The complex participates in a supramolecular assembly through N—H···O and O—H···O hydrogen bonds between HydEt-en and oxalate ligands. The HydEt-en ligand is involved in hydrogen bonds through its amino, imino and hydroxyl groups. In the crystal structure (Fig. 2), N1—H1···O4i and N2—H2A···O1ii (Table 2) hydrogen bonds constitute a polymeric chain parallel to the [010], giving rise to C(4) chain and R22(8) (Bernstein et al., 1995) rings. These polymeric chains are inter-connected to each other by N2—H2B···O2iii and O5—H5···O3iv hydrogen bonds extending through the ac plane, resulting in a three-dimensional supramolecular network as illustrated in Fig. 3.

Experimental

The HydEt-en ligand (0.12 g, 2 mmol) was added dropwise to a solution of Cu(ox).0.5H2O (0.48 g, 3.0 mmol) in pyridine-water (1:2, 30 ml) at 50° C. The resulting solution was stirred for 1 h at 50° C and then filtered. The reaction mixture was then slowly cooled to room temperature. Violet crystals suitable for X-ray diffraction analysis were obtained after a few days and were washed with 5 ml of ethanol and dried in air.

Refinement

All H atoms involved in hydrogen bondings were located in a difference Fourier map and their positional and Uiso parameters were refined. The remaining H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C-H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of [Cu(HydEt-en)(ox)] with atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level for the non hydrogen atoms.
Fig. 2.
The assembly of polymeric chains of [Cu(HydEt-en)(ox)] into a two-dimensional layer by N—H···O and O—H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for ...
Fig. 3.
The supramolecular network of [Cu(HydEt-en)(ox)] projected onto (010). All H atoms except H2b and H5 have been omitted for clarity. Symmetry codes are as given in Table 2.

Crystal data

[Cu(C2O4)(C4H12N2O)]F(000) = 524
Mr = 255.72Dx = 1.874 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10045 reflections
a = 7.9766 (5) Åθ = 1.6–28.0°
b = 8.7263 (4) ŵ = 2.41 mm1
c = 13.0191 (7) ÅT = 296 K
V = 906.21 (9) Å3Prism, violet
Z = 40.52 × 0.42 × 0.23 mm

Data collection

Stoe IPDS-II diffractometer1868 independent reflections
Radiation source: fine-focus sealed tube1780 reflections with I > 2σ(I)
plane graphiteRint = 0.063
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.8°
ω scansh = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −10→10
Tmin = 0.570, Tmax = 0.781l = −15→16
10045 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065w = 1/[σ2(Fo2) + (0.0427P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1868 reflectionsΔρmax = 0.22 e Å3
143 parametersΔρmin = −1.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 797 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.017 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6054 (2)0.4652 (2)0.44437 (15)0.0242 (4)
C20.7217 (3)0.3322 (2)0.41059 (16)0.0274 (4)
C30.1649 (3)0.2157 (3)0.28011 (18)0.0389 (5)
H3A0.08210.18360.33020.047*
H3B0.14510.15890.21720.047*
C40.1448 (3)0.3853 (2)0.25922 (18)0.0374 (5)
H4A0.03890.40290.22440.045*
H4B0.14220.44040.32390.045*
C50.2752 (3)0.3933 (3)0.08732 (16)0.0334 (4)
H5A0.19740.45690.04920.040*
H5B0.23570.28830.08450.040*
C60.4476 (3)0.4039 (3)0.04004 (16)0.0339 (4)
H6A0.44870.3530−0.02620.041*
H6B0.47800.51050.02990.041*
Cu10.50643 (3)0.38250 (2)0.252350 (16)0.02606 (11)
N10.2830 (2)0.44501 (19)0.19527 (13)0.0271 (4)
N20.5680 (2)0.3297 (2)0.11000 (14)0.0282 (4)
O10.48949 (18)0.49776 (14)0.38029 (11)0.0288 (3)
O20.6303 (2)0.53159 (18)0.52577 (12)0.0364 (4)
O30.8216 (2)0.27578 (18)0.47136 (13)0.0408 (4)
O40.70385 (19)0.28980 (16)0.31740 (11)0.0328 (3)
O50.3275 (2)0.18117 (19)0.31756 (14)0.0351 (3)
H10.280 (3)0.542 (3)0.1959 (18)0.028 (6)*
H2A0.559 (3)0.223 (3)0.102 (2)0.038 (7)*
H2B0.668 (4)0.371 (4)0.093 (2)0.052 (8)*
H50.319 (3)0.186 (3)0.373 (2)0.030 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0248 (9)0.0247 (8)0.0231 (9)−0.0019 (7)−0.0017 (8)−0.0006 (7)
C20.0259 (9)0.0240 (8)0.0323 (10)0.0001 (8)−0.0045 (8)0.0010 (8)
C30.0350 (12)0.0418 (11)0.0400 (11)−0.0101 (10)−0.0008 (10)0.0076 (9)
C40.0307 (10)0.0416 (11)0.0399 (13)0.0025 (8)0.0031 (9)0.0028 (11)
C50.0340 (10)0.0397 (10)0.0266 (10)−0.0020 (10)−0.0076 (8)0.0005 (9)
C60.0419 (11)0.0360 (9)0.0238 (10)−0.0051 (9)−0.0019 (9)0.0035 (8)
Cu10.02695 (16)0.02892 (15)0.02230 (18)0.00454 (9)−0.00390 (9)−0.00309 (8)
N10.0286 (8)0.0228 (8)0.0299 (9)0.0020 (6)−0.0050 (7)−0.0012 (6)
N20.0280 (9)0.0289 (8)0.0276 (9)−0.0039 (7)0.0030 (7)−0.0019 (7)
O10.0315 (7)0.0291 (6)0.0258 (6)0.0055 (6)−0.0055 (6)−0.0039 (5)
O20.0366 (9)0.0409 (7)0.0316 (8)0.0008 (7)−0.0068 (7)−0.0103 (7)
O30.0415 (9)0.0449 (8)0.0359 (8)0.0151 (7)−0.0119 (7)−0.0018 (7)
O40.0321 (7)0.0363 (8)0.0299 (7)0.0109 (6)−0.0046 (7)−0.0068 (6)
O50.0370 (8)0.0366 (8)0.0318 (8)−0.0002 (7)0.0049 (7)0.0061 (7)

Geometric parameters (Å, °)

C1—O21.224 (2)C5—H5A0.97
C1—O11.277 (2)C5—H5B0.97
C1—C21.549 (3)C6—N21.473 (3)
C2—O31.226 (3)C6—H6A0.97
C2—O41.276 (3)C6—H6B0.97
C3—O51.418 (3)Cu1—O11.9505 (13)
C3—C41.514 (3)Cu1—O41.9625 (14)
C3—H3A0.97Cu1—N21.9717 (18)
C3—H3B0.97Cu1—N12.0066 (18)
C4—N11.477 (3)Cu1—O52.4174 (16)
C4—H4A0.97N1—H10.85 (3)
C4—H4B0.97N2—H2A0.94 (3)
C5—N11.477 (3)N2—H2B0.91 (3)
C5—C61.509 (3)O5—H50.72 (3)
O2—C1—O1125.27 (18)H6A—C6—H6B108.4
O2—C1—C2120.22 (17)O1—Cu1—O484.24 (6)
O1—C1—C2114.50 (16)O1—Cu1—N2160.11 (7)
O3—C2—O4124.72 (19)O4—Cu1—N296.29 (7)
O3—C2—C1120.44 (18)O1—Cu1—N196.58 (6)
O4—C2—C1114.83 (16)O4—Cu1—N1169.93 (7)
O5—C3—C4111.52 (19)N2—Cu1—N186.36 (7)
O5—C3—H3A109.3O1—Cu1—O591.94 (6)
C4—C3—H3A109.3O4—Cu1—O591.30 (6)
O5—C3—H3B109.3N2—Cu1—O5107.90 (7)
C4—C3—H3B109.3N1—Cu1—O578.65 (7)
H3A—C3—H3B108.0C4—N1—C5113.41 (17)
N1—C4—C3111.52 (19)C4—N1—Cu1111.01 (13)
N1—C4—H4A109.3C5—N1—Cu1107.84 (13)
C3—C4—H4A109.3C4—N1—H1109.0 (17)
N1—C4—H4B109.3C5—N1—H1108.3 (16)
C3—C4—H4B109.3Cu1—N1—H1107.1 (16)
H4A—C4—H4B108.0C6—N2—Cu1108.44 (13)
N1—C5—C6109.33 (17)C6—N2—H2A108.3 (16)
N1—C5—H5A109.8Cu1—N2—H2A108.5 (16)
C6—C5—H5A109.8C6—N2—H2B104 (2)
N1—C5—H5B109.8Cu1—N2—H2B111 (2)
C6—C5—H5B109.8H2A—N2—H2B116 (3)
H5A—C5—H5B108.3C1—O1—Cu1113.13 (11)
N2—C6—C5108.33 (17)C2—O4—Cu1112.35 (12)
N2—C6—H6A110.0C3—O5—Cu1105.36 (12)
C5—C6—H6A110.0C3—O5—H5104 (2)
N2—C6—H6B110.0Cu1—O5—H5112 (2)
C5—C6—H6B110.0
O2—C1—C2—O311.9 (3)O4—Cu1—N2—C6−173.13 (13)
O1—C1—C2—O3−169.41 (19)N1—Cu1—N2—C616.62 (13)
O2—C1—C2—O4−167.92 (19)O5—Cu1—N2—C693.46 (14)
O1—C1—C2—O410.8 (2)O2—C1—O1—Cu1173.14 (16)
O5—C3—C4—N150.6 (3)C2—C1—O1—Cu1−5.5 (2)
N1—C5—C6—N249.2 (2)O4—Cu1—O1—C10.32 (13)
C3—C4—N1—C571.6 (2)N2—Cu1—O1—C1−92.3 (2)
C3—C4—N1—Cu1−50.0 (2)N1—Cu1—O1—C1170.23 (14)
C6—C5—N1—C4−157.56 (17)O5—Cu1—O1—C191.43 (13)
C6—C5—N1—Cu1−34.2 (2)O3—C2—O4—Cu1170.12 (18)
O1—Cu1—N1—C4−64.96 (14)C1—C2—O4—Cu1−10.1 (2)
O4—Cu1—N1—C429.1 (4)O1—Cu1—O4—C25.92 (14)
N2—Cu1—N1—C4134.79 (14)N2—Cu1—O4—C2165.93 (14)
O5—Cu1—N1—C425.71 (13)N1—Cu1—O4—C2−89.3 (4)
O1—Cu1—N1—C5170.23 (13)O5—Cu1—O4—C2−85.90 (14)
O4—Cu1—N1—C5−95.7 (4)C4—C3—O5—Cu1−25.7 (2)
N2—Cu1—N1—C59.98 (14)O1—Cu1—O5—C396.66 (14)
O5—Cu1—N1—C5−99.10 (14)O4—Cu1—O5—C3−179.06 (14)
C5—C6—N2—Cu1−39.46 (19)N2—Cu1—O5—C3−82.02 (15)
O1—Cu1—N2—C6−82.7 (2)N1—Cu1—O5—C30.34 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.85 (3)2.17 (3)3.015 (2)173 (2)
N2—H2A···O1ii0.94 (3)2.02 (3)2.936 (2)165 (2)
N2—H2B···O2iii0.91 (3)2.02 (3)2.909 (2)168 (3)
O5—H5···O3iv0.72 (3)2.06 (3)2.774 (3)171 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+3/2, −y+1, z−1/2; (iv) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2929).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Karadağ, A., Paşaoğlu, H., Kaştaş, G. & Büyükgüngör, O. (2004). Acta Cryst. C60, m581–m583. [PubMed]
  • Karadağ, A., Paşaoğlu, H., Kaştaş, G. & Büyükgüngör, O. (2005). Z. Kristallogr.220, 74–78.
  • Paşaoğlu, H., Karadağ, A., Tezcan, F. & Büyükgüngör, O. (2005). Acta Cryst. C61, m93–m94. [PubMed]
  • Scott, K. L., Wieghardt, K. & Sykes, A. G. (1973). Inorg. Chem.12, 655–663.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-RED32 and X-AREA Stoe & Cie, Darmstadt, Germany.
  • Xia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003–1009.
  • Yılmaz, V. T., Senel, E. & Thoene, C. (2003). J. Coord. Chem.56, 1417–1423.
  • Youngme, S., Albada, G. A., Chaichit, N., Gunnasoot, P., Kongsaeree, P., Mutikainen, I., Roubeau, O., Reedijk, J. & Turpeinen, U. (2003). Inorg. Chim. Acta, 353, 119–128.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography