PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2849.
Published online 2009 October 23. doi:  10.1107/S1600536809042524
PMCID: PMC2970955

(1S,4S,5S,8R)-8-Nitro­oxy-2,6-dioxa­bicyclo­[3.3.0]octan-4-yl 3,4,5-triacetoxy­benzoate

Abstract

In the title compound, C19H19NO13, one of the two fused furan­ose rings adopts an envelope conformation whereas the other displays a twisted conformation. The crystal structure is stabilized by inter­molecular C—H(...)π inter­actions between a methine H atom and the triacetoxy­phenyl ring of an adjacent mol­ecule, and by weak non-classical inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Velazquez et al. (2007 [triangle]), Calmès et al.(2003 [triangle]). For related structures, see: Ezhilmuthu et al. (2008 [triangle]). For the bioactivity of the title compound, see: Rigas & Williams (2008 [triangle]); Carini et al. (2002 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]); Rao et al. (1981 [triangle]). For the determination of the absolute structure, see: van Koningsveld et al. (1984 [triangle]); Brown et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2849-scheme1.jpg

Experimental

Crystal data

  • C19H19NO13
  • M r = 469.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2849-efi1.jpg
  • a = 10.8053 (19) Å
  • b = 6.5941 (12) Å
  • c = 16.075 (3) Å
  • β = 108.243 (3)°
  • V = 1087.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.31 × 0.25 × 0.14 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.962, T max = 0.983
  • 5474 measured reflections
  • 2112 independent reflections
  • 1394 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.105
  • S = 1.02
  • 2112 reflections
  • 301 parameters
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042524/dn2497sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042524/dn2497Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

supplementary crystallographic information

Comment

The title compound is synthesized by esterification of 3,4,5-triacetoxybenzoic acid with Isosorbide Mononitrate.It can be rapidly metabolized to 3,4,5-trihydroxybenzoic acid and Isosorbide Mononitrate in vivo(Carini et al.,2002). 3,4,5-trihydroxybenzoic acid is a bioactivesubstance which can scavenge oxygen free radicals and Isosorbide Mononitrate is a classical nitric oxide-donor drug. This bifunctional molecule may have better bioactivity but do bring fewer side effect.

The molecule is built up from the isosorbide mononitrate skeleton substituted on C4 by the 3,4,5-triacetoxybenzoate (Fig. 1). The two fused furanose rings have slightly different conformation. Indeed, the Cremer & Pople (1975) puckering parameters for the C1-O2-C3-C4-C5 ring are Q(2) = 0.359 (4)Å and [var phi](2) = 289.1 (6)° whereas those for the C5-O6-C7-C8-C1 ring are Q(2) = 0.334 (4)Å and [var phi](2) = 343.4 (7)°. These values indicate that these two rings have different extent of puckering caused by the different substituent group in the ring. The pseudorotation parameters (Rao et al. 1981) for C1-O2-C3-C4-C5 ring are P = 20.8 (4)° & τ(M) = 37.3 (2)° for the C5—C4 reference bond with the closest pucker descriptor being enveloped on C(4) and those for C5-O6-C7-C8-C1 ring are P = 75.4 (4)° and τ(M) = 35.7 (3)° for the C8—C1 reference bond with the closest puckering descriptor being twisted on C5—O6.

Owing to the know absolute configuration of the starting isosorbide mononitrate, the absolute configuration of the title compound could be deduced to be 1S,4S,5S,8R.

The molecular packing is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds and by intermolecular C–H···π interaction between methine H atom of perhydrofurofuranyl system and the triacetoxyphenyl ring of an adjacent molecule (Table 1, Cg1 is the centroid of C42—C47 phenyl ring).

Experimental

3,4,5-triacetoxybenzoic acid(2.96 g, 10 mmol), Isosorbide Mononitrate (1.91 g, 10 mmol, CAS No:16051–77-7, [α]D=168 ° (c=1.0, EtOH) and DMAP (0.24 g, 1 mmol) were dissolved in 100 ml dry THF, then DCC (4.12 g, 10 mmol) was added to the solution at 0°C. The mixture was stirred at room temperature for 5 h. The resulting mixture was filtered and concentrated in vacuo. The crude product was purified by column chromatography over silica gelusing ethyl acetate/n-hexane (7:3) as eluent. Yield: 4.21 g (85%). Single crystals of the title compound suitable for X-ray diffraction was recrystallized from hexane/ethyl acetate (1:1).

Refinement

All H atoms were positioned geometrically and treated as riding with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97Å & methyl C—H = 0.96 Å. The H atom isotropic displacement parameters were fixed; Uiso(aromatic H, methine H) = 1.2 times Ueq of the parent atom; Uiso(methylene H, methyl H) = 1.5 times Ueq of the parent atom.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed. The enantiomer has been assigned by reference to unchanging chiral centres in the synthetic procedure.

Figures

Fig. 1.
Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C19H19NO13F(000) = 488
Mr = 469.35Dx = 1.433 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1117 reflections
a = 10.8053 (19) Åθ = 2.7–19.9°
b = 6.5941 (12) ŵ = 0.12 mm1
c = 16.075 (3) ÅT = 296 K
β = 108.243 (3)°Block, colorless
V = 1087.8 (3) Å30.31 × 0.25 × 0.14 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer2112 independent reflections
Radiation source: fine-focus sealed tube1394 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −12→12
Tmin = 0.962, Tmax = 0.983k = −7→7
5474 measured reflectionsl = 0→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0523P)2] where P = (Fo2 + 2Fc2)/3
2112 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.0658 (8)0.548 (4)0.4472 (4)0.1120 (17)
O2−0.0166 (3)0.369 (4)0.28660 (18)0.0708 (8)
O60.0245 (3)0.779 (4)0.21440 (17)0.0650 (8)
O80.5258 (2)−0.138 (4)0.32531 (17)0.0659 (8)
O90.3795 (4)−0.169 (4)0.39702 (18)0.0954 (12)
O100.5277 (3)−0.439 (4)0.20426 (18)0.0688 (8)
O110.4726 (3)−0.581 (4)0.3144 (2)0.0781 (9)
O120.3201 (3)−0.487 (4)0.05899 (17)0.0737 (8)
O130.3616 (5)−0.318 (4)−0.0486 (2)0.1167 (14)
O410.1465 (2)0.293 (4)0.17708 (15)0.0585 (7)
O420.0434 (3)0.151 (4)0.04764 (18)0.0826 (10)
O81−0.0735 (3)0.671 (4)0.37604 (19)0.0816 (9)
O820.0378 (6)0.480 (4)0.4869 (3)0.158 (2)
O83−0.1700 (6)0.521 (4)0.4569 (4)0.172 (2)
C10.0854 (4)0.513 (4)0.3148 (2)0.0605 (11)
H10.16560.44960.35200.073*
C3−0.0643 (4)0.367 (4)0.1932 (3)0.0649 (11)
H3A−0.14030.45330.17190.078*
H3B−0.08760.23030.17150.078*
C40.0463 (4)0.446 (4)0.1642 (2)0.0565 (10)
H40.01750.50080.10460.068*
C50.1061 (4)0.605 (4)0.2330 (2)0.0548 (10)
H50.19750.63480.23950.066*
C70.0305 (6)0.868 (4)0.2950 (3)0.0952 (17)
H7A−0.04960.94040.28990.114*
H7B0.10250.96300.31300.114*
C80.0497 (5)0.700 (4)0.3605 (3)0.0670 (11)
H80.11900.73220.41490.080*
C100.4899 (5)−0.151 (4)0.3995 (3)0.0729 (13)
C110.6060 (5)−0.142 (4)0.4792 (3)0.112 (2)
H11A0.6213−0.00440.49910.168*
H11B0.6808−0.19210.46550.168*
H11C0.5910−0.22430.52440.168*
C120.5425 (4)−0.574 (4)0.2703 (3)0.0662 (12)
C130.6544 (4)−0.711 (4)0.2740 (3)0.0902 (15)
H13A0.6682−0.80330.32230.135*
H13B0.7315−0.63130.28170.135*
H13C0.6353−0.78650.22040.135*
C140.3353 (5)−0.473 (4)−0.0211 (3)0.0778 (14)
C150.3109 (6)−0.673 (4)−0.0662 (3)0.1031 (18)
H15A0.3250−0.6620−0.12210.155*
H15B0.2225−0.7137−0.07450.155*
H15C0.3693−0.7721−0.03110.155*
C410.1323 (4)0.151 (4)0.1152 (2)0.0600 (11)
C420.2370 (4)−0.002 (4)0.1410 (2)0.0518 (9)
C430.3335 (4)0.005 (4)0.2218 (2)0.0544 (10)
H430.33480.11030.26050.065*
C440.4267 (4)−0.144 (4)0.2443 (2)0.0535 (10)
C450.4261 (4)−0.300 (4)0.1875 (2)0.0577 (10)
C460.3280 (4)−0.310 (4)0.1084 (2)0.0567 (10)
C470.2337 (4)−0.165 (4)0.0849 (2)0.0576 (10)
H470.1675−0.17450.03160.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.154 (5)0.100 (4)0.110 (4)0.009 (4)0.083 (4)0.021 (3)
O20.100 (2)0.0474 (17)0.0766 (19)−0.0117 (17)0.0451 (17)0.0010 (16)
O60.087 (2)0.0495 (16)0.0616 (16)0.0065 (16)0.0272 (14)0.0106 (14)
O80.0588 (16)0.0684 (19)0.0611 (16)−0.0001 (15)0.0055 (14)−0.0052 (16)
O90.086 (2)0.139 (3)0.0596 (17)0.009 (3)0.0203 (17)0.007 (2)
O100.0723 (19)0.074 (2)0.0657 (17)0.0082 (17)0.0301 (15)0.0047 (16)
O110.092 (2)0.069 (2)0.0833 (19)−0.0089 (18)0.0409 (18)−0.0031 (18)
O120.099 (2)0.0669 (19)0.0561 (16)−0.0005 (19)0.0261 (15)−0.0150 (16)
O130.169 (4)0.120 (4)0.081 (2)−0.016 (4)0.067 (3)−0.010 (3)
O410.0613 (16)0.0570 (17)0.0504 (15)0.0048 (15)0.0076 (12)−0.0069 (14)
O420.097 (2)0.077 (2)0.0528 (15)0.0207 (19)−0.0076 (16)−0.0134 (17)
O810.093 (2)0.074 (2)0.0826 (19)0.0111 (19)0.0350 (18)−0.002 (2)
O820.174 (5)0.188 (6)0.125 (4)0.050 (5)0.064 (4)0.085 (4)
O830.195 (5)0.151 (5)0.233 (6)0.010 (5)0.161 (5)0.039 (5)
C10.073 (3)0.057 (3)0.050 (2)0.010 (3)0.0168 (19)0.008 (2)
C30.054 (2)0.052 (2)0.082 (3)−0.001 (2)0.012 (2)0.004 (2)
C40.061 (2)0.056 (2)0.047 (2)0.005 (2)0.0093 (19)−0.0003 (19)
C50.062 (2)0.051 (2)0.051 (2)0.001 (2)0.0169 (19)0.0018 (19)
C70.156 (5)0.059 (3)0.085 (3)0.019 (4)0.059 (3)0.001 (3)
C80.083 (3)0.060 (3)0.060 (2)0.005 (2)0.026 (2)−0.001 (2)
C100.078 (3)0.078 (3)0.055 (3)0.004 (3)0.009 (2)−0.011 (2)
C110.091 (3)0.160 (6)0.063 (3)0.019 (4)−0.008 (3)−0.013 (4)
C120.071 (3)0.057 (3)0.071 (3)−0.016 (2)0.023 (2)−0.008 (2)
C130.069 (3)0.074 (3)0.132 (4)0.013 (3)0.036 (3)0.014 (3)
C140.077 (3)0.099 (4)0.056 (3)0.009 (3)0.018 (2)−0.021 (3)
C150.114 (4)0.109 (5)0.083 (3)0.006 (4)0.026 (3)−0.038 (4)
C410.082 (3)0.052 (3)0.044 (2)0.001 (2)0.017 (2)−0.001 (2)
C420.061 (2)0.048 (2)0.045 (2)−0.001 (2)0.0135 (18)−0.0041 (19)
C430.066 (2)0.047 (2)0.049 (2)−0.008 (2)0.0159 (19)−0.0077 (19)
C440.052 (2)0.057 (3)0.048 (2)−0.005 (2)0.0107 (18)−0.007 (2)
C450.059 (2)0.061 (3)0.056 (2)0.006 (2)0.021 (2)0.006 (2)
C460.072 (3)0.054 (2)0.046 (2)−0.006 (2)0.021 (2)−0.010 (2)
C470.071 (3)0.057 (3)0.0437 (19)−0.004 (2)0.0153 (19)−0.005 (2)

Geometric parameters (Å, °)

O2—C11.42 (3)C14—C151.49 (3)
O2—C31.427 (5)C41—C421.48 (3)
O6—C51.42 (3)C42—C431.389 (5)
O6—C71.405 (16)C42—C471.40 (3)
O8—C101.367 (6)C43—C441.37 (3)
O8—C441.404 (4)C44—C451.37 (3)
O9—C101.187 (8)C45—C461.379 (5)
O10—C121.36 (2)C46—C471.36 (3)
O10—C451.39 (2)C1—H10.9800
O11—C121.188 (6)C3—H3A0.9700
O12—C141.351 (6)C3—H3B0.9700
O12—C461.40 (3)C4—H40.9800
O13—C141.18 (3)C5—H50.9800
O41—C41.45 (3)C7—H7A0.9700
O41—C411.34 (3)C7—H7B0.9700
O42—C411.204 (5)C8—H80.9800
O81—N11.38 (2)C11—H11A0.9600
O81—C81.442 (8)C11—H11B0.9600
O82—N11.189 (17)C11—H11C0.9600
O83—N11.197 (12)C13—H13A0.9600
C1—C51.527 (15)C13—H13B0.9600
C1—C81.55 (3)C13—H13C0.9600
C3—C41.505 (14)C15—H15A0.9600
C4—C51.51 (3)C15—H15B0.9600
C7—C81.50 (3)C15—H15C0.9600
C10—C111.487 (7)C43—H430.9300
C12—C131.50 (2)C47—H470.9300
C1—O2—C3109.4 (13)O12—C46—C47121.4 (8)
C5—O6—C7107.3 (10)C45—C46—C47121.0 (18)
C10—O8—C44117.7 (4)C42—C47—C46119.7 (7)
C12—O10—C45118.5 (7)O2—C1—H1111.00
C14—O12—C46119 (2)C5—C1—H1111.00
C4—O41—C41118.3 (7)C8—C1—H1111.00
N1—O81—C8113.7 (11)O2—C3—H3A111.00
O81—N1—O82117.9 (10)O2—C3—H3B111.00
O81—N1—O83112.3 (12)C4—C3—H3A111.00
O82—N1—O83129.8 (18)C4—C3—H3B111.00
O2—C1—C5107.4 (8)H3A—C3—H3B109.00
O2—C1—C8113.7 (8)O41—C4—H4113.00
C5—C1—C8102.6 (18)C3—C4—H4113.00
O2—C3—C4105.2 (7)C5—C4—H4113.00
O41—C4—C3110.2 (19)O6—C5—H5114.00
O41—C4—C5104.4 (8)C1—C5—H5114.00
C3—C4—C5102.2 (8)C4—C5—H5114.00
O6—C5—C1104.7 (10)O6—C7—H7A110.00
O6—C5—C4108.1 (9)O6—C7—H7B110.00
C1—C5—C4102.1 (17)C8—C7—H7A110.00
O6—C7—C8107 (2)C8—C7—H7B110.00
O81—C8—C1111.0 (18)H7A—C7—H7B109.00
O81—C8—C7106.7 (12)O81—C8—H8111.00
C1—C8—C7104.9 (9)C1—C8—H8111.00
O8—C10—O9122.2 (4)C7—C8—H8111.00
O8—C10—C11110.8 (5)C10—C11—H11A110.00
O9—C10—C11126.9 (5)C10—C11—H11B109.00
O10—C12—O11123.5 (18)C10—C11—H11C109.00
O10—C12—C13108.9 (8)H11A—C11—H11B109.00
O11—C12—C13127.6 (19)H11A—C11—H11C110.00
O12—C14—O13122 (2)H11B—C11—H11C109.00
O12—C14—C15110.4 (19)C12—C13—H13A110.00
O13—C14—C15127.6 (8)C12—C13—H13B109.00
O41—C41—O42123 (2)C12—C13—H13C109.00
O41—C41—C42111.7 (8)H13A—C13—H13B110.00
O42—C41—C42125 (2)H13A—C13—H13C109.00
C41—C42—C43121.7 (17)H13B—C13—H13C110.00
C41—C42—C47118.9 (7)C14—C15—H15A109.00
C43—C42—C47119.3 (17)C14—C15—H15B109.00
C42—C43—C44119.8 (18)C14—C15—H15C109.00
O8—C44—C43120.5 (18)H15A—C15—H15B109.00
O8—C44—C45118.8 (17)H15A—C15—H15C110.00
C43—C44—C45120.7 (7)H15B—C15—H15C109.00
O10—C45—C44121.7 (7)C42—C43—H43120.00
O10—C45—C46118.7 (16)C44—C43—H43120.00
C44—C45—C46119.4 (17)C42—C47—H47120.00
O12—C46—C45117.1 (18)C46—C47—H47120.00
C3—O2—C1—C5−2(2)O2—C1—C8—C7−106.1 (12)
C3—O2—C1—C8111.2 (14)C5—C1—C8—O81124.5 (9)
C1—O2—C3—C424 (2)C5—C1—C8—C79.6 (7)
C7—O6—C5—C138.2 (16)O2—C3—C4—O4175 (2)
C7—O6—C5—C4146.4 (11)O2—C3—C4—C5−36 (2)
C5—O6—C7—C8−32.0 (12)O41—C4—C5—O6168.9 (10)
C44—O8—C10—O91(4)O41—C4—C5—C1−81.0 (10)
C44—O8—C10—C11−180 (2)C3—C4—C5—O6−76.2 (15)
C10—O8—C44—C4363 (3)C3—C4—C5—C133.9 (15)
C10—O8—C44—C45−118 (2)O6—C7—C8—O81−105.3 (13)
C45—O10—C12—O111(3)O6—C7—C8—C112.6 (7)
C45—O10—C12—C13178.2 (15)O41—C41—C42—C432(2)
C12—O10—C45—C4470 (3)O41—C41—C42—C47177.7 (14)
C12—O10—C45—C46−115.3 (16)O42—C41—C42—C43−177.5 (16)
C46—O12—C14—O134.0 (11)O42—C41—C42—C47−2(2)
C46—O12—C14—C15−174.5 (6)C41—C42—C43—C44177.9 (14)
C14—O12—C46—C45−118.2 (11)C47—C42—C43—C442(2)
C14—O12—C46—C4769.8 (11)C41—C42—C47—C46−178.7 (13)
C41—O41—C4—C383.5 (13)C43—C42—C47—C46−3(2)
C41—O41—C4—C5−167.3 (14)C42—C43—C44—O8179.3 (14)
C4—O41—C41—O424(2)C42—C43—C44—C450(2)
C4—O41—C41—C42−175.7 (13)O8—C44—C45—O10−7(2)
N1—O81—C8—C178.0 (16)O8—C44—C45—C46178.8 (14)
N1—O81—C8—C7−168.3 (17)C43—C44—C45—O10172.3 (15)
C8—O81—N1—O820(3)C43—C44—C45—C46−2(2)
C8—O81—N1—O83−178 (2)O10—C45—C46—O1215 (2)
O2—C1—C5—O691.8 (18)O10—C45—C46—C47−173.0 (15)
O2—C1—C5—C4−20.9 (17)C44—C45—C46—O12−170.4 (13)
C8—C1—C5—O6−28.4 (11)C44—C45—C46—C472(2)
C8—C1—C5—C4−141.0 (9)O12—C46—C47—C42172.6 (13)
O2—C1—C8—O818.8 (14)C45—C46—C47—C421(2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.982.563.365 (13)139
C4—H4···O42ii0.982.533.507 (15)177
C43—H43···O11i0.932.513.25 (3)136
C47—H47···O42iii0.932.523.314 (14)144
C11—H11B···O83iv0.962.523.39 (3)151

Symmetry codes: (i) x, y+1, z; (ii) −x, y+1/2, −z; (iii) −x, y−1/2, −z; (iv) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2497).

References

  • Brown, C. Marston, R. W., Quigley, P. F. & Roberts, S. M. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1809–1810.
  • Bruker (2000). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Calmès, M., Escale, F., Rolland, M. & Martinez, J. (2003). Tetrahedron Asymmetry, 14, 1685–1689.
  • Carini, M., Aldini, G., Orioli, M. & Maffei, F. R. (2002). J Pharm Biomed Anal 29, 1061–1071. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J Am Chem Soc 97, 1354–1358.
  • Ezhilmuthu, R. P., Vembu, N. & Sulochana, N. (2008). Acta Cryst. E64, o1306–o1307. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Koningsveld, H. van, Peters, J. A. & Jansen, J. C. (1984). Acta Cryst. C40, 519–521.
  • Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
  • Rigas, B. & Williams, J. L. (2008). Nitric Oxide, 19, 199–204. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Velazquez, C. A., Rao, P., Citro, M. L., Keefer, L. K. & Knaus, E. E. (2007). Bioorg. Med. Chem. 15, 4767–4774. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography