PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1422.
Published online 2009 October 23. doi:  10.1107/S1600536809042810
PMCID: PMC2970954

{2-Hydr­oxy-N′-[1-(2-oxidophenyl)ethyl­idene]benzohydrazidato}morpholinecopper(II)

Abstract

The CuII ion in the title complex, [Cu(C15H12N2O3)(C4H9NO)], is coordinated by one carbonyl O atom, one hydrazine N atom and one phenolate O atom from the doubly deprotonated tridentate ligand and one N atom from a morpholine mol­ecule, forming a distorted trans-CuN2O2 square-planar coordination geometry. An intra­molecular O—H(...)N hydrogen bond occurs within the ligand, generating an S(6) ring.

Related literature

For background to aroylhydrazone derivatives, see: Singh (1992 [triangle]); Liu et al. (2003 [triangle]); Bai et al. (2005 [triangle]). For related structures, see: Gatto et al. (2004 [triangle]); Huo et al. (2004 [triangle]); Chen et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1422-scheme1.jpg

Experimental

Crystal data

  • [Cu(C15H12N2O3)(C4H9NO)]
  • M r = 418.93
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1422-efi1.jpg
  • a = 9.220 (4) Å
  • b = 17.616 (9) Å
  • c = 12.023 (6) Å
  • β = 112.257 (14)°
  • V = 1807.4 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 293 K
  • 0.26 × 0.17 × 0.14 mm

Data collection

  • Rigaku Weissenberg IP diffractometer
  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999 [triangle]) T min = 0.769, T max = 0.837
  • 16528 measured reflections
  • 4032 independent reflections
  • 3273 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.089
  • S = 1.05
  • 4032 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: TEXRAY (Molecular Structure Corporation, 1999 [triangle]); cell refinement: TEXRAY; data reduction: TEXSAN (Mol­ecular Structure Corporation, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042810/hb5147sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042810/hb5147Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Northeast Dianli University for supporting this study.

supplementary crystallographic information

Comment

In the past decade, much attention has been focused on the study of aroylhydrazones derivative with aryl, aroyl and heteroaroyl Schiff bases due to their coordination abilities to metal ions (Singh et al., 1992; Liu et al., 2003; Bai et al., 2005). Ongoing the study of aroylhydrazone complexes, we report here the synthesis and crystal structure of a new complex with 2-hydroxy-N'- (2-oxyphenyl-ethylidene)benzohydrazidate(2-) ligand (Fig. 1).

The title complex, (I), contains one copper(II) center having distorted quadrilateral coordination environment, one O,N,O'-tridentate ligand molecule and one coordinated morpholine molecule. There exists one intramolecular phenol-hydrazone O—H···N hydrogen bond in each ligand, forming a six-membered ring.

Experimental

The ligand was prepared by the reaction of 2-hydroxyacetophenone and salicylhydrazine in a molar ratio of 1:1 under reflux in ethanol for 2 h. The white precipitate was collected, washed several times with ethanol and dried in vacuo (yield 79%). Morpholine (3 ml) was dropped into the mixture of 2-hydroxy-N'-(2-oxyphenyl- ethylidene)benzohydrazide (27 mg, 0.1 mmol) and Cu(Ac)2.2H2O (21 mg, 0.1 mmol) in methanol (10 ml). After stirring for 5 h, the reaction mixture was filtered and left to stand at room temperature. Green prisms of (I) were obtained by slow evaporation after 10 d. Analysis calculated for C19H21N3O4Cu: C 54.47, H 5.05, N 10.03%; found: C 53.99, H 5.01, N 10.29%.

Refinement

H atoms bouded to phenolate O and morpholine N atoms were located in difference Fourier maps and were refined isotropically with O—H and N—H distance restraints of 0.82 and 0.91 Å, respectively. All other H atoms were placed in idealized positions and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for the methylene H atoms].

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate hydrogen bonding. Only H atoms involved in hydrogen bonds have been included.

Crystal data

[Cu(C15H12N2O3)(C4H9NO)]F(000) = 868
Mr = 418.93Dx = 1.540 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4032 reflections
a = 9.220 (4) Åθ = 3.3–27.5°
b = 17.616 (9) ŵ = 1.24 mm1
c = 12.023 (6) ÅT = 293 K
β = 112.257 (14)°Prism, green
V = 1807.4 (15) Å30.26 × 0.17 × 0.14 mm
Z = 4

Data collection

Rigaku Weissenberg IP diffractometer4032 independent reflections
Radiation source: fine-focus sealed tube3273 reflections with I > 2σ(I)
graphiteRint = 0.049
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999)h = −11→10
Tmin = 0.769, Tmax = 0.837k = −22→22
16528 measured reflectionsl = −14→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.042P)2 + 0.6843P] where P = (Fo2 + 2Fc2)/3
4032 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.35584 (3)0.512750 (15)0.55888 (2)0.03343 (10)
O1−0.2016 (2)0.39749 (11)0.30393 (17)0.0635 (5)
H1A−0.14040.43300.31470.064 (9)*
O20.24346 (16)0.42406 (8)0.57392 (13)0.0392 (4)
O30.46114 (18)0.59329 (10)0.52104 (14)0.0479 (4)
O40.7081 (2)0.51533 (12)0.97389 (16)0.0626 (5)
N10.06587 (19)0.46639 (10)0.39142 (17)0.0373 (4)
N20.17322 (19)0.52585 (9)0.41154 (16)0.0334 (4)
N30.5322 (2)0.49568 (9)0.72070 (16)0.0343 (4)
H3B0.59800.46180.70680.042 (6)*
C1−0.1317 (3)0.34097 (13)0.3828 (2)0.0438 (5)
C20.0206 (2)0.34834 (12)0.4699 (2)0.0369 (5)
C30.0825 (3)0.28792 (13)0.5489 (2)0.0428 (5)
H3A0.18290.29210.60750.051*
C4−0.0011 (3)0.22263 (14)0.5418 (3)0.0534 (6)
H4A0.04280.18270.59460.064*
C5−0.1511 (3)0.21633 (16)0.4560 (3)0.0618 (7)
H5A−0.20850.17220.45130.074*
C6−0.2160 (3)0.27518 (16)0.3775 (3)0.0583 (7)
H6A−0.31740.27070.32050.070*
C70.1169 (2)0.41671 (12)0.4806 (2)0.0356 (5)
C80.1354 (2)0.58214 (12)0.33475 (19)0.0362 (5)
C90.2478 (2)0.64281 (12)0.34607 (19)0.0361 (5)
C100.4016 (3)0.64486 (12)0.43607 (19)0.0370 (5)
C110.5022 (3)0.70507 (13)0.4351 (2)0.0482 (6)
H11A0.60180.70720.49520.058*
C120.4580 (3)0.76027 (14)0.3488 (3)0.0570 (7)
H12A0.52750.79870.34940.068*
C130.3082 (4)0.75849 (15)0.2602 (3)0.0619 (7)
H13A0.27710.79580.20110.074*
C140.2067 (3)0.70213 (14)0.2596 (2)0.0503 (6)
H14A0.10650.70250.20020.060*
C15−0.0237 (3)0.58277 (16)0.2353 (2)0.0536 (6)
H15A−0.04900.53260.20240.080*
H15B−0.02350.61720.17350.080*
H15C−0.10040.59890.26650.080*
C160.6283 (3)0.56298 (15)0.7719 (2)0.0539 (7)
H16A0.56260.60220.78490.065*
H16B0.67060.58240.71490.065*
C170.7606 (3)0.5460 (2)0.8884 (2)0.0656 (8)
H17A0.83190.51040.87400.079*
H17B0.81820.59240.92000.079*
C180.6243 (4)0.44769 (19)0.9289 (2)0.0773 (10)
H18A0.58810.42680.98850.093*
H18B0.69410.41080.91530.093*
C190.4852 (3)0.46037 (18)0.8129 (2)0.0630 (8)
H19A0.43480.41210.78320.076*
H19B0.40980.49280.82820.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02910 (14)0.03649 (15)0.02903 (15)−0.00266 (10)0.00461 (11)0.00205 (10)
O10.0410 (9)0.0587 (11)0.0667 (12)−0.0113 (8)−0.0069 (9)0.0105 (9)
O20.0315 (8)0.0406 (8)0.0368 (8)−0.0046 (6)0.0032 (7)0.0024 (6)
O30.0385 (8)0.0521 (10)0.0427 (9)−0.0085 (7)0.0035 (7)0.0171 (7)
O40.0669 (12)0.0777 (13)0.0314 (9)−0.0159 (10)0.0053 (9)−0.0069 (8)
N10.0294 (9)0.0389 (10)0.0378 (10)−0.0020 (7)0.0060 (8)−0.0014 (8)
N20.0295 (8)0.0347 (10)0.0316 (9)0.0004 (7)0.0067 (7)−0.0024 (7)
N30.0321 (9)0.0344 (9)0.0314 (9)0.0001 (7)0.0065 (8)−0.0045 (7)
C10.0394 (12)0.0444 (13)0.0434 (13)−0.0061 (9)0.0111 (10)−0.0073 (10)
C20.0326 (10)0.0384 (11)0.0383 (11)−0.0029 (8)0.0118 (9)−0.0091 (9)
C30.0402 (12)0.0424 (12)0.0438 (13)−0.0020 (9)0.0138 (11)−0.0039 (10)
C40.0618 (16)0.0403 (13)0.0558 (15)−0.0078 (11)0.0197 (13)−0.0032 (11)
C50.0701 (18)0.0481 (15)0.0636 (17)−0.0251 (13)0.0212 (15)−0.0121 (13)
C60.0494 (15)0.0606 (16)0.0532 (15)−0.0206 (12)0.0063 (13)−0.0138 (13)
C70.0297 (10)0.0382 (11)0.0377 (11)0.0000 (8)0.0115 (9)−0.0047 (9)
C80.0335 (11)0.0416 (12)0.0304 (10)0.0084 (8)0.0087 (9)−0.0003 (8)
C90.0391 (11)0.0350 (11)0.0341 (11)0.0086 (8)0.0139 (9)0.0012 (8)
C100.0416 (11)0.0356 (11)0.0345 (11)0.0025 (8)0.0151 (10)0.0017 (9)
C110.0489 (13)0.0413 (13)0.0524 (14)−0.0024 (10)0.0170 (12)0.0038 (10)
C120.0651 (17)0.0374 (13)0.0692 (17)−0.0018 (11)0.0262 (15)0.0089 (12)
C130.0736 (18)0.0452 (15)0.0617 (17)0.0103 (13)0.0196 (15)0.0198 (13)
C140.0526 (14)0.0436 (14)0.0478 (14)0.0109 (11)0.0112 (12)0.0126 (11)
C150.0411 (13)0.0613 (16)0.0451 (14)0.0045 (11)0.0014 (11)0.0107 (11)
C160.0597 (15)0.0538 (15)0.0383 (12)−0.0212 (12)0.0072 (12)−0.0059 (10)
C170.0515 (15)0.092 (2)0.0416 (14)−0.0220 (15)0.0043 (13)−0.0141 (14)
C180.100 (2)0.068 (2)0.0369 (14)−0.0222 (17)−0.0044 (16)0.0128 (13)
C190.0653 (17)0.0730 (18)0.0367 (13)−0.0284 (14)0.0036 (13)0.0081 (12)

Geometric parameters (Å, °)

Cu1—O31.8702 (17)C6—H6A0.9300
Cu1—O21.9208 (16)C8—C91.459 (3)
Cu1—N21.9409 (18)C8—C151.501 (3)
Cu1—N32.0308 (19)C9—C141.421 (3)
O1—C11.357 (3)C9—C101.421 (3)
O1—H1A0.8200C10—C111.412 (3)
O2—C71.283 (3)C11—C121.366 (3)
O3—C101.321 (3)C11—H11A0.9300
O4—C171.399 (4)C12—C131.389 (4)
O4—C181.412 (4)C12—H12A0.9300
N1—C71.325 (3)C13—C141.362 (4)
N1—N21.398 (2)C13—H13A0.9300
N2—C81.309 (3)C14—H14A0.9300
N3—C161.468 (3)C15—H15A0.9600
N3—C191.472 (3)C15—H15B0.9600
N3—H3B0.9100C15—H15C0.9600
C1—C61.384 (3)C16—C171.499 (4)
C1—C21.404 (3)C16—H16A0.9700
C2—C31.397 (3)C16—H16B0.9700
C2—C71.473 (3)C17—H17A0.9700
C3—C41.370 (3)C17—H17B0.9700
C3—H3A0.9300C18—C191.512 (4)
C4—C51.381 (4)C18—H18A0.9700
C4—H4A0.9300C18—H18B0.9700
C5—C61.377 (4)C19—H19A0.9700
C5—H5A0.9300C19—H19B0.9700
O3—Cu1—O2171.23 (7)C10—C9—C8123.93 (19)
O3—Cu1—N292.21 (7)O3—C10—C11116.2 (2)
O2—Cu1—N282.54 (7)O3—C10—C9125.0 (2)
O3—Cu1—N392.53 (7)C11—C10—C9118.8 (2)
O2—Cu1—N393.11 (7)C12—C11—C10122.2 (2)
N2—Cu1—N3174.38 (8)C12—C11—H11A118.9
C1—O1—H1A109.5C10—C11—H11A118.9
C7—O2—Cu1110.14 (14)C11—C12—C13119.4 (2)
C10—O3—Cu1127.42 (14)C11—C12—H12A120.3
C17—O4—C18109.6 (2)C13—C12—H12A120.3
C7—N1—N2110.10 (17)C14—C13—C12120.1 (2)
C8—N2—N1117.62 (17)C14—C13—H13A119.9
C8—N2—Cu1129.87 (15)C12—C13—H13A119.9
N1—N2—Cu1112.43 (13)C13—C14—C9122.7 (2)
C16—N3—C19109.2 (2)C13—C14—H14A118.7
C16—N3—Cu1114.77 (15)C9—C14—H14A118.7
C19—N3—Cu1115.24 (15)C8—C15—H15A109.5
C16—N3—H3B105.6C8—C15—H15B109.5
C19—N3—H3B105.6H15A—C15—H15B109.5
Cu1—N3—H3B105.6C8—C15—H15C109.5
O1—C1—C6118.2 (2)H15A—C15—H15C109.5
O1—C1—C2122.0 (2)H15B—C15—H15C109.5
C6—C1—C2119.8 (2)N3—C16—C17112.2 (2)
C3—C2—C1118.2 (2)N3—C16—H16A109.2
C3—C2—C7119.06 (19)C17—C16—H16A109.2
C1—C2—C7122.7 (2)N3—C16—H16B109.2
C4—C3—C2121.5 (2)C17—C16—H16B109.2
C4—C3—H3A119.3H16A—C16—H16B107.9
C2—C3—H3A119.3O4—C17—C16112.2 (2)
C3—C4—C5119.7 (3)O4—C17—H17A109.2
C3—C4—H4A120.2C16—C17—H17A109.2
C5—C4—H4A120.2O4—C17—H17B109.2
C6—C5—C4120.2 (2)C16—C17—H17B109.2
C6—C5—H5A119.9H17A—C17—H17B107.9
C4—C5—H5A119.9O4—C18—C19112.3 (2)
C5—C6—C1120.6 (2)O4—C18—H18A109.2
C5—C6—H6A119.7C19—C18—H18A109.2
C1—C6—H6A119.7O4—C18—H18B109.2
O2—C7—N1124.6 (2)C19—C18—H18B109.2
O2—C7—C2118.6 (2)H18A—C18—H18B107.9
N1—C7—C2116.84 (19)N3—C19—C18111.6 (2)
N2—C8—C9119.94 (18)N3—C19—H19A109.3
N2—C8—C15119.1 (2)C18—C19—H19A109.3
C9—C8—C15121.0 (2)N3—C19—H19B109.3
C14—C9—C10116.8 (2)C18—C19—H19B109.3
C14—C9—C8119.2 (2)H19A—C19—H19B108.0
O3—Cu1—O2—C7−49.8 (5)N2—N1—C7—C2−176.95 (18)
N2—Cu1—O2—C73.75 (14)C3—C2—C7—O2−11.5 (3)
N3—Cu1—O2—C7−179.83 (14)C1—C2—C7—O2168.8 (2)
O2—Cu1—O3—C1065.8 (5)C3—C2—C7—N1168.0 (2)
N2—Cu1—O3—C1012.8 (2)C1—C2—C7—N1−11.7 (3)
N3—Cu1—O3—C10−164.2 (2)N1—N2—C8—C9−175.30 (18)
C7—N1—N2—C8−176.03 (19)Cu1—N2—C8—C98.3 (3)
C7—N1—N2—Cu11.0 (2)N1—N2—C8—C154.2 (3)
O3—Cu1—N2—C8−13.1 (2)Cu1—N2—C8—C15−172.20 (17)
O2—Cu1—N2—C8173.9 (2)N2—C8—C9—C14177.9 (2)
N3—Cu1—N2—C8134.4 (7)C15—C8—C9—C14−1.6 (3)
O3—Cu1—N2—N1170.31 (14)N2—C8—C9—C101.1 (3)
O2—Cu1—N2—N1−2.64 (14)C15—C8—C9—C10−178.4 (2)
N3—Cu1—N2—N1−42.2 (8)Cu1—O3—C10—C11172.81 (17)
O3—Cu1—N3—C1625.97 (19)Cu1—O3—C10—C9−8.7 (3)
O2—Cu1—N3—C16−160.75 (18)C14—C9—C10—O3−177.8 (2)
N2—Cu1—N3—C16−121.6 (7)C8—C9—C10—O3−0.9 (4)
O3—Cu1—N3—C19154.11 (19)C14—C9—C10—C110.6 (3)
O2—Cu1—N3—C19−32.60 (19)C8—C9—C10—C11177.5 (2)
N2—Cu1—N3—C196.6 (8)O3—C10—C11—C12176.9 (2)
O1—C1—C2—C3178.8 (2)C9—C10—C11—C12−1.7 (4)
C6—C1—C2—C30.3 (4)C10—C11—C12—C131.4 (4)
O1—C1—C2—C7−1.4 (4)C11—C12—C13—C140.0 (4)
C6—C1—C2—C7−180.0 (2)C12—C13—C14—C9−1.0 (4)
C1—C2—C3—C40.6 (4)C10—C9—C14—C130.7 (4)
C7—C2—C3—C4−179.1 (2)C8—C9—C14—C13−176.3 (3)
C2—C3—C4—C5−0.9 (4)C19—N3—C16—C1751.4 (3)
C3—C4—C5—C60.3 (4)Cu1—N3—C16—C17−177.45 (19)
C4—C5—C6—C10.6 (5)C18—O4—C17—C1659.0 (4)
O1—C1—C6—C5−179.5 (3)N3—C16—C17—O4−56.9 (3)
C2—C1—C6—C5−0.9 (4)C17—O4—C18—C19−58.7 (4)
Cu1—O2—C7—N1−4.7 (3)C16—N3—C19—C18−50.8 (3)
Cu1—O2—C7—C2174.76 (15)Cu1—N3—C19—C18178.3 (2)
N2—N1—C7—O22.6 (3)O4—C18—C19—N355.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.872.588 (3)146

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5147).

References

  • Bai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem.44, 5972–5974. [PubMed]
  • Chen, X.-H., Wu, Q.-J., Liang, Z.-Y., Zhan, C.-R. & Liu, J.-B. (2009). Acta Cryst. C65, m190–m194. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gatto, C. C., Schulz-Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem.630, 1286–1295.
  • Huo, L.-H., Lu, Z.-Z., Gao, S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1636–m1638.
  • Liu, L., Ji, Y.-L., Jia, D.-Z. & Yu, K.-B. (2003). Chin. J. Struct. Chem.22, 568–572.
  • Molecular Structure Corporation (1999). TEXRAY and TEXSAN MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, G. (1992). Synth. React. Inorg. Met.-Org. Chem.22, 1605–1618.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography