PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1271.
Published online 2009 October 3. doi:  10.1107/S1600536809038793
PMCID: PMC2970953

Poly[[triaqua­(μ3-pyridine-2,4,6-tri­car­boxyl­ato)gadolinium(III)] monohydrate]

Abstract

The title compound, {[Gd(C8H2NO6)(H2O)3]·H2O}n, was obtained in water under hydro­thermal conditions. The GdIII ions are nine-coordinated by two O and one N atoms from one pyridine-2,4,6-tricarboxyl­ate ligand, two O atoms from another ligand, one O atom from a third ligand and three coordinated water mol­ecules. Each ligand binds three metal centers. Two-dimensional layers are formed through the Gd—O bonds and the layers are linked by O—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For related structures, see: Gao et al. (2006 [triangle]); Ghosh & Bharadwaj (2005 [triangle]); Wang et al. (2007 [triangle]); Fu & Xu (2008 [triangle]); Li et al. (2008 [triangle]). For general background to lanthanide-organic frameworks and their properties, see: Parker (2000 [triangle]); Tobisch (2005 [triangle]); Pan et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1271-scheme1.jpg

Experimental

Crystal data

  • [Gd(C8H2NO6)(H2O)3]·H2O
  • M r = 437.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1271-efi1.jpg
  • a = 11.896 (3) Å
  • b = 7.2696 (14) Å
  • c = 13.505 (3) Å
  • β = 96.259 (3)°
  • V = 1160.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.77 mm−1
  • T = 113 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.544, T max = 0.655
  • 10599 measured reflections
  • 2776 independent reflections
  • 2366 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.049
  • S = 1.04
  • 2776 reflections
  • 206 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −1.29 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038793/zq2008sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038793/zq2008Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Education Department of Henan Province (2009B150026).

supplementary crystallographic information

Comment

The preparation and property researching of metal-organic frameworks have attracted widespread interest in recent years due to their potential application in the areas of magnetism, luminescence, adsorption, catalysis and so on (Parker, 2000; Tobisch, 2005; Pan et al., 2003). Multicarboxylic acids containing pyridyl rings were widely used and many 1-D, 2-D and 3-D coordination polymers with novel structures have been reported. Especially, complexes with pyridine-2,4,6-tricarboxylato (H3pta = pyridine-2,4,6-tricarboxylic acid) ligands have been recently reported (Li et al., 2008; Wang et al., 2007; Fu et al., 2008.). The title compound is a new GdIII complex built with pta ligands and prepared under hydrothermal conditions.

As shown in Fig. 1, the local geometry of GdIII ion is a distorted monocapped antitetragonal prism. Each pta ligand connects three GdIII ions with oxgen atoms of the carboxyl groups and the nitrogen atom. There are three coordination water molecules on each GdIII ion. A two-dimentional layer is constructed by the bonding among oxygen atoms and GdIII ions (see Fig. 2). In addition, a lattice water molecule per asymmetric unit is in the crystal structure. Many O—H···O hydrogen bonds are formed between the oxygen atoms of water molecules and the oxygen atoms of caboxyl groups. As a result, the three-dimensional network formed by hydrogen bonds is shown in Fig. 3.

Experimental

A mixture of H3pta (0.0422 g, 0.2 mmol), GdCl3.6H2O (0.0743 g, 0.2 mmol) and deionized water (15 ml) was put in a teflon-lined steel bomb and heated at 453 K for 3 days, then cooled the bomb at a rate of 2 K/hour. The colorless crystals suitable for X-ray diffraction measurements were obtained. Spectroscopic analysis: IR (KBr, ν cm-1): 3606, 3382, 1631, 1608, 1582, 1549, 1445, 1395, 1352, 1277, 1235, 1110, 1025, 950, 931, 818, 791, 740, 664, 623, 587, 543, 479, 435. Elemental analysis, calculated for C8H10GdNO10: C, 21.97; H, 2.30; N, 3.20.%; found: C, 22.18; H, 2.11; N, 3.54%.

Refinement

All hydrogen atoms bonded to carbon atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were found from difference Fourier maps and included in the final refinements with a restraint of O—H = 0.75 - 0.85 Å and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing of (I), showing the two-dimensional layers formed by Gd—O bonds.
Fig. 3.
View of the three-dimensional network constructed by O—H···O hydrogen bonds (dashed lines). All H atoms were omitted for clarity.

Crystal data

[Gd(C8H2NO6)(H2O)3]·H2OF(000) = 836
Mr = 437.42Dx = 2.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3775 reflections
a = 11.896 (3) Åθ = 1.7–28.7°
b = 7.2696 (14) ŵ = 5.77 mm1
c = 13.505 (3) ÅT = 113 K
β = 96.259 (3)°Block, colourless
V = 1160.9 (4) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Rigaku Saturn diffractometer2776 independent reflections
Radiation source: rotating anode2366 reflections with I > 2σ(I)
confocalRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω scansh = −15→15
Absorption correction: multi-scan (REQAB; Jacobson, 1998)k = −8→9
Tmin = 0.544, Tmax = 0.655l = −17→17
10599 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0242P)2] where P = (Fo2 + 2Fc2)/3
2776 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.64 e Å3
8 restraintsΔρmin = −1.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Gd10.283337 (12)0.28362 (2)0.703522 (11)0.00496 (6)
O10.46782 (18)0.4287 (3)0.74763 (16)0.0085 (5)
O20.58731 (18)0.5825 (3)0.85710 (16)0.0080 (4)
O30.3449 (2)1.0594 (3)1.05119 (16)0.0101 (5)
O40.25022 (19)0.8881 (3)1.14877 (16)0.0111 (5)
O50.10951 (19)0.3347 (3)0.77338 (17)0.0118 (5)
O60.00718 (19)0.4715 (3)0.88248 (16)0.0105 (5)
O70.3762 (2)0.1238 (3)0.85200 (17)0.0109 (5)
H7A0.425 (3)0.051 (4)0.838 (3)0.016*
H7B0.369 (3)0.110 (5)0.9117 (19)0.016*
O80.1937 (2)−0.0211 (3)0.71872 (18)0.0117 (5)
H8A0.129 (2)−0.034 (5)0.690 (3)0.018*
H8B0.225 (3)−0.109 (4)0.709 (3)0.018*
O90.1329 (2)0.2581 (3)0.56658 (18)0.0135 (5)
H9A0.081 (3)0.185 (4)0.571 (3)0.020*
H9B0.121 (3)0.314 (5)0.513 (2)0.020*
O100.0781 (2)0.4862 (3)0.40873 (19)0.0194 (6)
H10A0.106 (4)0.505 (6)0.357 (2)0.029*
H10B0.016 (3)0.531 (5)0.392 (3)0.029*
N10.2963 (2)0.4907 (3)0.85098 (19)0.0060 (5)
C10.3938 (3)0.5761 (4)0.8822 (2)0.0055 (6)
C20.4007 (3)0.7107 (4)0.9553 (2)0.0073 (6)
H20.46990.77300.97440.009*
C30.3035 (3)0.7525 (4)1.0003 (2)0.0082 (6)
C40.2043 (3)0.6563 (4)0.9712 (2)0.0073 (6)
H40.13850.67611.00370.009*
C50.2035 (3)0.5320 (4)0.8944 (2)0.0070 (6)
C60.4912 (3)0.5242 (4)0.8255 (2)0.0068 (6)
C70.3007 (3)0.9081 (4)1.0720 (2)0.0077 (6)
C80.0974 (3)0.4387 (4)0.8469 (2)0.0072 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Gd10.00489 (8)0.00531 (9)0.00486 (9)0.00011 (6)0.00130 (6)−0.00021 (6)
O10.0066 (11)0.0089 (11)0.0103 (12)−0.0013 (8)0.0017 (9)−0.0024 (9)
O20.0051 (11)0.0103 (11)0.0082 (11)−0.0021 (8)−0.0006 (9)0.0004 (8)
O30.0137 (12)0.0071 (11)0.0099 (12)−0.0012 (9)0.0034 (9)−0.0026 (9)
O40.0143 (13)0.0104 (12)0.0094 (12)−0.0038 (9)0.0059 (9)−0.0025 (9)
O50.0075 (12)0.0142 (11)0.0142 (12)−0.0027 (9)0.0030 (9)−0.0062 (9)
O60.0054 (11)0.0150 (12)0.0111 (12)0.0014 (9)0.0015 (9)−0.0024 (9)
O70.0132 (13)0.0111 (12)0.0086 (12)0.0047 (9)0.0023 (10)0.0035 (9)
O80.0084 (12)0.0096 (12)0.0166 (13)0.0008 (9)−0.0005 (10)−0.0012 (10)
O90.0135 (13)0.0173 (13)0.0088 (12)−0.0061 (9)−0.0027 (10)0.0041 (9)
O100.0237 (16)0.0199 (13)0.0141 (14)0.0057 (11)0.0010 (12)0.0048 (11)
N10.0057 (13)0.0058 (12)0.0065 (13)0.0006 (9)0.0012 (10)0.0008 (10)
C10.0072 (15)0.0040 (14)0.0056 (15)−0.0021 (11)0.0024 (12)0.0023 (11)
C20.0071 (15)0.0054 (14)0.0094 (16)−0.0029 (11)0.0015 (12)0.0004 (12)
C30.0097 (17)0.0102 (16)0.0042 (15)0.0004 (11)−0.0011 (12)0.0011 (11)
C40.0061 (15)0.0070 (14)0.0092 (16)0.0013 (11)0.0026 (12)0.0021 (12)
C50.0059 (15)0.0073 (15)0.0083 (16)0.0010 (11)0.0021 (12)0.0009 (12)
C60.0095 (16)0.0038 (14)0.0071 (16)0.0000 (11)0.0007 (12)0.0014 (11)
C70.0054 (15)0.0101 (15)0.0070 (16)0.0018 (11)−0.0017 (12)0.0000 (12)
C80.0065 (16)0.0060 (15)0.0095 (16)−0.0008 (11)0.0023 (12)0.0021 (12)

Geometric parameters (Å, °)

Gd1—O2i2.335 (2)O7—H7B0.83 (2)
Gd1—O52.393 (2)O8—H8A0.82 (3)
Gd1—O92.437 (3)O8—H8B0.75 (2)
Gd1—O12.449 (2)O9—H9A0.82 (2)
Gd1—O72.471 (2)O9—H9B0.83 (2)
Gd1—O82.477 (2)O10—H10A0.81 (2)
Gd1—N12.488 (2)O10—H10B0.82 (3)
Gd1—O4ii2.517 (2)N1—C51.339 (4)
Gd1—O3ii2.530 (2)N1—C11.342 (4)
Gd1—C7ii2.880 (3)C1—C21.386 (4)
O1—C61.266 (4)C1—C61.504 (4)
O2—C61.250 (4)C2—C31.397 (4)
O2—Gd1iii2.335 (2)C2—H20.9500
O3—C71.264 (4)C3—C41.391 (4)
O3—Gd1iv2.530 (2)C3—C71.492 (4)
O4—C71.261 (4)C4—C51.374 (4)
O4—Gd1iv2.517 (2)C4—H40.9500
O5—C81.269 (4)C5—C81.513 (4)
O6—C81.245 (4)C7—Gd1iv2.880 (3)
O7—H7A0.82 (2)
O2i—Gd1—O5150.00 (8)C6—O1—Gd1123.22 (19)
O2i—Gd1—O998.27 (8)C6—O2—Gd1iii134.9 (2)
O5—Gd1—O973.52 (8)C7—O3—Gd1iv92.69 (17)
O2i—Gd1—O175.39 (7)C7—O4—Gd1iv93.35 (18)
O5—Gd1—O1128.84 (7)C8—O5—Gd1125.3 (2)
O9—Gd1—O1141.45 (7)Gd1—O7—H7A112 (3)
O2i—Gd1—O774.73 (7)Gd1—O7—H7B140 (3)
O5—Gd1—O794.71 (8)H7A—O7—H7B107 (4)
O9—Gd1—O7143.75 (8)Gd1—O8—H8A117 (3)
O1—Gd1—O772.28 (7)Gd1—O8—H8B121 (3)
O2i—Gd1—O877.00 (7)H8A—O8—H8B106 (4)
O5—Gd1—O873.01 (8)Gd1—O9—H9A119 (3)
O9—Gd1—O872.98 (8)Gd1—O9—H9B131 (3)
O1—Gd1—O8138.37 (7)H9A—O9—H9B109 (4)
O7—Gd1—O870.78 (8)H10A—O10—H10B98 (4)
O2i—Gd1—N1132.39 (8)C5—N1—C1118.9 (3)
O5—Gd1—N164.62 (8)C5—N1—Gd1120.3 (2)
O9—Gd1—N1129.04 (8)C1—N1—Gd1120.47 (19)
O1—Gd1—N164.48 (7)N1—C1—C2122.2 (3)
O7—Gd1—N169.63 (8)N1—C1—C6114.3 (3)
O8—Gd1—N1117.68 (8)C2—C1—C6123.4 (3)
O2i—Gd1—O4ii125.38 (7)C1—C2—C3118.4 (3)
O5—Gd1—O4ii81.63 (7)C1—C2—H2120.8
O9—Gd1—O4ii76.75 (8)C3—C2—H2120.8
O1—Gd1—O4ii76.74 (7)C4—C3—C2119.0 (3)
O7—Gd1—O4ii136.55 (8)C4—C3—C7119.1 (3)
O8—Gd1—O4ii144.83 (8)C2—C3—C7121.7 (3)
N1—Gd1—O4ii69.84 (8)C5—C4—C3118.7 (3)
O2i—Gd1—O3ii74.76 (7)C5—C4—H4120.7
O5—Gd1—O3ii126.13 (8)C3—C4—H4120.7
O9—Gd1—O3ii70.79 (8)N1—C5—C4122.7 (3)
O1—Gd1—O3ii70.88 (7)N1—C5—C8113.8 (3)
O7—Gd1—O3ii136.76 (8)C4—C5—C8123.4 (3)
O8—Gd1—O3ii129.52 (7)O2—C6—O1125.4 (3)
N1—Gd1—O3ii112.32 (8)O2—C6—C1117.9 (3)
O4ii—Gd1—O3ii51.91 (7)O1—C6—C1116.7 (3)
O2i—Gd1—C7ii100.19 (8)O4—C7—O3122.0 (3)
O5—Gd1—C7ii104.20 (8)O4—C7—C3119.5 (3)
O9—Gd1—C7ii71.79 (8)O3—C7—C3118.4 (3)
O1—Gd1—C7ii72.09 (8)O4—C7—Gd1iv60.73 (15)
O7—Gd1—C7ii144.11 (8)O3—C7—Gd1iv61.32 (15)
O8—Gd1—C7ii143.83 (9)C3—C7—Gd1iv176.6 (2)
N1—Gd1—C7ii91.16 (8)O6—C8—O5126.3 (3)
O4ii—Gd1—C7ii25.92 (7)O6—C8—C5117.7 (3)
O3ii—Gd1—C7ii25.99 (7)O5—C8—C5116.0 (3)
O2i—Gd1—O1—C6−147.2 (2)Gd1—N1—C1—C2171.2 (2)
O5—Gd1—O1—C612.7 (3)C5—N1—C1—C6−177.8 (3)
O9—Gd1—O1—C6127.9 (2)Gd1—N1—C1—C6−4.0 (3)
O7—Gd1—O1—C6−68.8 (2)N1—C1—C2—C32.6 (4)
O8—Gd1—O1—C6−97.2 (2)C6—C1—C2—C3177.5 (3)
N1—Gd1—O1—C66.5 (2)C1—C2—C3—C40.9 (4)
O4ii—Gd1—O1—C680.3 (2)C1—C2—C3—C7−173.7 (3)
O3ii—Gd1—O1—C6134.2 (2)C2—C3—C4—C5−4.3 (5)
C7ii—Gd1—O1—C6106.8 (2)C7—C3—C4—C5170.5 (3)
O2i—Gd1—O5—C8133.9 (2)C1—N1—C5—C4−1.1 (4)
O9—Gd1—O5—C8−148.4 (3)Gd1—N1—C5—C4−174.9 (2)
O1—Gd1—O5—C8−4.4 (3)C1—N1—C5—C8175.1 (3)
O7—Gd1—O5—C866.6 (2)Gd1—N1—C5—C81.3 (3)
O8—Gd1—O5—C8134.8 (3)C3—C4—C5—N14.6 (5)
N1—Gd1—O5—C81.8 (2)C3—C4—C5—C8−171.3 (3)
O4ii—Gd1—O5—C8−69.8 (2)Gd1iii—O2—C6—O162.9 (4)
O3ii—Gd1—O5—C8−98.3 (2)Gd1iii—O2—C6—C1−115.0 (3)
C7ii—Gd1—O5—C8−82.7 (2)Gd1—O1—C6—O2171.1 (2)
O2i—Gd1—N1—C5−151.4 (2)Gd1—O1—C6—C1−11.0 (3)
O5—Gd1—N1—C5−1.5 (2)N1—C1—C6—O2−172.4 (3)
O9—Gd1—N1—C536.4 (3)C2—C1—C6—O212.4 (4)
O1—Gd1—N1—C5173.1 (2)N1—C1—C6—O19.6 (4)
O7—Gd1—N1—C5−107.4 (2)C2—C1—C6—O1−165.6 (3)
O8—Gd1—N1—C5−53.6 (2)Gd1iv—O4—C7—O30.5 (3)
O4ii—Gd1—N1—C588.6 (2)Gd1iv—O4—C7—C3−176.1 (3)
O3ii—Gd1—N1—C5119.2 (2)Gd1iv—O3—C7—O4−0.5 (3)
C7ii—Gd1—N1—C5103.6 (2)Gd1iv—O3—C7—C3176.1 (3)
O2i—Gd1—N1—C134.9 (3)C4—C3—C7—O445.8 (4)
O5—Gd1—N1—C1−175.3 (2)C2—C3—C7—O4−139.6 (3)
O9—Gd1—N1—C1−137.4 (2)C4—C3—C7—O3−131.0 (3)
O1—Gd1—N1—C1−0.6 (2)C2—C3—C7—O343.6 (4)
O7—Gd1—N1—C178.9 (2)Gd1—O5—C8—O6177.7 (2)
O8—Gd1—N1—C1132.6 (2)Gd1—O5—C8—C5−1.8 (4)
O4ii—Gd1—N1—C1−85.1 (2)N1—C5—C8—O6−179.3 (3)
O3ii—Gd1—N1—C1−54.5 (2)C4—C5—C8—O6−3.1 (4)
C7ii—Gd1—N1—C1−70.1 (2)N1—C5—C8—O50.2 (4)
C5—N1—C1—C2−2.6 (4)C4—C5—C8—O5176.4 (3)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7A···O1i0.82 (2)2.02 (3)2.794 (3)157 (4)
O7—H7B···O3v0.83 (2)1.97 (2)2.795 (3)175 (4)
O8—H8A···O6vi0.82 (3)1.80 (3)2.621 (3)171 (4)
O8—H8B···O4vii0.75 (2)2.22 (3)2.933 (3)158 (4)
O9—H9A···O6vi0.82 (2)2.01 (3)2.800 (3)161 (4)
O9—H9B···O100.83 (2)1.91 (3)2.723 (3)166 (4)
O10—H10A···O8vii0.81 (2)2.24 (3)3.051 (4)173 (4)
O10—H10B···O9viii0.82 (3)2.45 (3)3.169 (4)148 (4)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (v) x, y−1, z; (vi) −x, y−1/2, −z+3/2; (vii) x, −y+1/2, z−1/2; (viii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2008).

References

  • Fu, D.-W. & Xu, H.-J. (2008). Acta Cryst. E64, m35. [PMC free article] [PubMed]
  • Gao, H. L., Yi, L., Ding, B., Wang, H. S., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem.45, 481–483. [PubMed]
  • Ghosh, S. K. & Bharadwaj, P. K. (2005). Eur. J. Inorg. Chem.24, 4886–4889.
  • Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Li, C. J., Peng, M. X., Leng, J. D., Yang, M. M., Lin, Z. J. & Tong, M. L. (2008). CrystEngComm, 10, 1645–1652.
  • Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, C., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc.125, 3062–3063. [PubMed]
  • Parker, D. (2000). Coord. Chem. Rev.205, 109–115.
  • Rigaku/MSC (2005). CrystalStructure and CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tobisch, S. (2005). J. Am. Chem. Soc.127, 11979–11980. [PubMed]
  • Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des.7, 1851–1857.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography