PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2536.
Published online 2009 September 26. doi:  10.1107/S1600536809037908
PMCID: PMC2970498

2-Eth­oxy-4-[2-(3-nitro­phen­yl)­hydrazono­meth­yl]phenol

Abstract

The title Schiff base compound, C15H15N3O4, was prepared from a condensation reaction of 3-eth­oxy-4-hydroxy­benz­aldehyde and 3-nitro­phenyl­hydrazine. The mol­ecule is nearly planar; the dihedral angle between the hydroxy­benzene ring and the nitro­benzene ring is 6.57 (7)°. O—H(...)O, O—H(...)N and C—H(...)O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2536-scheme1.jpg

Experimental

Crystal data

  • C15H15N3O4
  • M r = 301.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2536-efi1.jpg
  • a = 12.4160 (6) Å
  • b = 7.7429 (4) Å
  • c = 16.2249 (9) Å
  • β = 110.497 (6)°
  • V = 1461.04 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.20 × 0.16 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.979, T max = 0.982
  • 5606 measured reflections
  • 2835 independent reflections
  • 1558 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.077
  • S = 0.80
  • 2835 reflections
  • 203 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037908/xu2611sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037908/xu2611Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The hydroxybenzene ring and the nitrobenzene ring is roughly co-planar, making a dihedral angle of 6.57 (7)°. Intramolecular O—H···O hydrogen bond and intermolecular O—H···N and C—H···O hydrogen bonds are observed (Table 1), they help to stabilize the crystal structure (Fig. 2).

Experimental

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The solution was stirred for several min at 351 K, 3-ethoxy-4-hydroxybenzaldehyde (1 mmol, 0.166 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The solid product was isolated and recrystallized from methanol, red single crystals were obtained after 3 d.

Refinement

Hydroxy H atom was located in a difference Fourier map and refined isotropically. The other H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.96 Å (methyl) and N—H = 0.86 Å, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level, showing intramolecular hydrogen bonds as dashed line.
Fig. 2.
The unit cell packing diagram showing intermolecular hydrogen bonding as dashed lines.

Crystal data

C15H15N3O4F(000) = 632
Mr = 301.30Dx = 1.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1850 reflections
a = 12.4160 (6) Åθ = 3.2–28.2°
b = 7.7429 (4) ŵ = 0.10 mm1
c = 16.2249 (9) ÅT = 296 K
β = 110.497 (6)°Block, red
V = 1461.04 (13) Å30.20 × 0.16 × 0.13 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2835 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −15→15
Tmin = 0.979, Tmax = 0.982k = −9→8
5606 measured reflectionsl = −20→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.80w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3
2835 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.13682 (9)0.87732 (14)0.23604 (7)0.0531 (3)
O20.22167 (11)0.78440 (15)0.40430 (8)0.0574 (3)
N10.50471 (10)1.09280 (16)0.17334 (8)0.0449 (3)
C60.44686 (13)0.95951 (18)0.28540 (10)0.0400 (4)
C100.58320 (12)1.20825 (19)0.06891 (10)0.0408 (4)
C110.47700 (12)1.22659 (19)0.00284 (10)0.0424 (4)
H11A0.40991.19370.01170.051*
N30.36075 (12)1.31235 (19)−0.14578 (10)0.0586 (4)
C20.25328 (13)0.89131 (18)0.27554 (10)0.0403 (4)
C40.40865 (14)0.86218 (19)0.41319 (10)0.0498 (4)
H4A0.43530.83530.47280.060*
C50.48479 (13)0.91857 (19)0.37376 (10)0.0467 (4)
H5A0.56250.92900.40720.056*
N20.59659 (11)1.14119 (17)0.15028 (9)0.0566 (4)
H2B0.66491.12910.18810.068*
C90.53084 (13)1.02074 (18)0.24853 (10)0.0449 (4)
H9A0.60831.00660.28170.054*
C10.32963 (13)0.94411 (18)0.23613 (10)0.0415 (4)
H1B0.30300.96970.17630.050*
C120.47362 (12)1.29476 (19)−0.07618 (10)0.0418 (4)
C30.29426 (14)0.84598 (18)0.36459 (10)0.0424 (4)
C150.68158 (13)1.2571 (2)0.05225 (11)0.0525 (4)
H15A0.75341.24410.09590.063*
O30.27636 (11)1.2634 (2)−0.13242 (10)0.1076 (6)
C130.56883 (14)1.3452 (2)−0.09402 (11)0.0545 (5)
H13A0.56301.3915−0.14830.065*
O40.35438 (11)1.3746 (2)−0.21577 (9)0.0961 (5)
C70.08594 (14)0.9091 (2)0.14407 (11)0.0570 (5)
H7A0.10260.81450.11120.068*
H7B0.11671.01460.12880.068*
C140.67357 (14)1.3242 (2)−0.02778 (12)0.0627 (5)
H14A0.74031.3562−0.03760.075*
C8−0.04114 (14)0.9256 (2)0.12228 (12)0.0676 (5)
H8A−0.07760.94690.06040.101*
H8B−0.05671.02000.15490.101*
H8C−0.07070.82060.13760.101*
H2A0.1526 (18)0.777 (2)0.3624 (14)0.100 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0394 (6)0.0719 (8)0.0458 (7)−0.0045 (5)0.0122 (5)0.0102 (6)
O20.0559 (8)0.0773 (8)0.0446 (8)−0.0088 (7)0.0246 (7)0.0017 (6)
N10.0349 (7)0.0587 (8)0.0418 (8)−0.0058 (6)0.0142 (6)0.0001 (7)
C60.0386 (9)0.0409 (9)0.0397 (10)−0.0013 (7)0.0127 (8)−0.0005 (7)
C100.0327 (9)0.0507 (9)0.0379 (10)−0.0041 (7)0.0112 (7)−0.0017 (7)
C110.0310 (9)0.0550 (10)0.0429 (10)−0.0045 (7)0.0152 (8)−0.0059 (8)
N30.0406 (9)0.0810 (10)0.0471 (10)0.0004 (8)0.0064 (8)0.0040 (8)
C20.0376 (9)0.0406 (9)0.0416 (10)−0.0012 (7)0.0125 (8)0.0015 (7)
C40.0519 (11)0.0609 (11)0.0333 (10)−0.0019 (9)0.0107 (8)0.0043 (8)
C50.0395 (9)0.0525 (10)0.0420 (10)−0.0015 (8)0.0065 (8)0.0020 (8)
N20.0293 (7)0.0921 (11)0.0443 (9)−0.0077 (7)0.0078 (6)0.0119 (8)
C90.0349 (9)0.0529 (10)0.0421 (11)−0.0007 (8)0.0074 (8)−0.0006 (8)
C10.0428 (9)0.0441 (9)0.0345 (9)−0.0022 (7)0.0098 (7)0.0017 (7)
C120.0338 (9)0.0508 (10)0.0387 (10)−0.0019 (7)0.0101 (7)−0.0044 (7)
C30.0469 (10)0.0445 (9)0.0391 (10)−0.0024 (8)0.0193 (8)−0.0002 (7)
C150.0301 (9)0.0729 (12)0.0501 (11)−0.0061 (8)0.0087 (8)0.0071 (9)
O30.0362 (8)0.1872 (16)0.0859 (11)−0.0113 (9)0.0045 (7)0.0440 (10)
C130.0493 (11)0.0695 (12)0.0447 (11)−0.0089 (9)0.0165 (9)0.0063 (8)
O40.0645 (9)0.1613 (15)0.0501 (9)−0.0042 (8)0.0043 (7)0.0324 (9)
C70.0453 (10)0.0696 (11)0.0488 (11)−0.0090 (9)0.0071 (9)0.0076 (9)
C140.0378 (10)0.0927 (14)0.0594 (13)−0.0133 (9)0.0192 (9)0.0098 (10)
C80.0471 (11)0.0812 (12)0.0652 (13)0.0020 (10)0.0081 (9)0.0044 (10)

Geometric parameters (Å, °)

O1—C21.3654 (16)C4—C31.368 (2)
O1—C71.4234 (18)C4—C51.385 (2)
O2—C31.3643 (18)C4—H4A0.9300
O2—H2A0.89 (2)C5—H5A0.9300
N1—C91.2759 (17)N2—H2B0.8600
N1—N21.3713 (16)C9—H9A0.9300
C6—C51.380 (2)C1—H1B0.9300
C6—C11.3989 (19)C12—C131.369 (2)
C6—C91.451 (2)C15—C141.369 (2)
C10—N21.3735 (19)C15—H15A0.9300
C10—C111.385 (2)C13—C141.376 (2)
C10—C151.393 (2)C13—H13A0.9300
C11—C121.374 (2)C7—C81.497 (2)
C11—H11A0.9300C7—H7A0.9700
N3—O31.2031 (17)C7—H7B0.9700
N3—O41.2105 (17)C14—H14A0.9300
N3—C121.4660 (19)C8—H8A0.9600
C2—C11.3782 (19)C8—H8B0.9600
C2—C31.398 (2)C8—H8C0.9600
C2—O1—C7119.12 (12)C2—C1—C6120.48 (14)
C3—O2—H2A106.4 (14)C2—C1—H1B119.8
C9—N1—N2115.03 (13)C6—C1—H1B119.8
C5—C6—C1118.84 (14)C13—C12—C11124.11 (15)
C5—C6—C9118.04 (14)C13—C12—N3118.29 (15)
C1—C6—C9123.11 (14)C11—C12—N3117.60 (14)
N2—C10—C11123.01 (14)O2—C3—C4118.96 (15)
N2—C10—C15118.04 (14)O2—C3—C2120.94 (14)
C11—C10—C15118.94 (14)C4—C3—C2120.09 (14)
C12—C11—C10118.13 (14)C14—C15—C10120.65 (15)
C12—C11—H11A120.9C14—C15—H15A119.7
C10—C11—H11A120.9C10—C15—H15A119.7
O3—N3—O4121.30 (16)C12—C13—C14116.81 (15)
O3—N3—C12119.33 (15)C12—C13—H13A121.6
O4—N3—C12119.37 (15)C14—C13—H13A121.6
O1—C2—C1126.38 (14)O1—C7—C8107.85 (14)
O1—C2—C3114.05 (13)O1—C7—H7A110.1
C1—C2—C3119.57 (14)C8—C7—H7A110.1
C3—C4—C5120.11 (15)O1—C7—H7B110.1
C3—C4—H4A119.9C8—C7—H7B110.1
C5—C4—H4A119.9H7A—C7—H7B108.4
C6—C5—C4120.84 (15)C15—C14—C13121.35 (15)
C6—C5—H5A119.6C15—C14—H14A119.3
C4—C5—H5A119.6C13—C14—H14A119.3
N1—N2—C10122.22 (13)C7—C8—H8A109.5
N1—N2—H2B118.9C7—C8—H8B109.5
C10—N2—H2B118.9H8A—C8—H8B109.5
N1—C9—C6123.92 (14)C7—C8—H8C109.5
N1—C9—H9A118.0H8A—C8—H8C109.5
C6—C9—H9A118.0H8B—C8—H8C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.89 (2)2.14 (2)2.6582 (16)116.7 (18)
O2—H2A···N1i0.89 (2)2.32 (2)3.0345 (19)137.0 (15)
C11—H11A···O2ii0.932.563.340 (2)141

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2611).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography